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ABSTRACT

The self-consistent method is used to calculate the crack opening profile in a
piezoelectric material under combined mechanical and electric loadings. The energy release rate
for crack propagation is evaluated using either the un-opened crack profile (before deformation)
or opened crack profile (after deformation). The results show that the applied electric field does
not influence the energy release rate if the un-opened crack profile is adopted, while the electric
field will play an important role when the opened crack profile is used. An analysis on an
clectrically conductive, elliptical cavity reveals the energy release rate for cavity propagation is a
positive definite function of the combined mechanical and electrical loadings.
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INTRODUCTION

The mechanical réliability of piezoelectric materials becomes increasingly important as
they are used in more and more sophisticated areas. Thus, there has been tremendous interest in
studying the fracture behavior and fracture mechanics of those materials (Pohanka et al., 1976;
Pohanka et al., 1978; Cherepanov, 1979; Deeg, 1980; Yamamoto ef al., 1983; McMeeking,
1989; Mehta and Virkar, 1990; Pak and Herrmann, 1986; Pak, 1990; Sosa and Pak, 1990; Suo
et al., 1992; Zhang and Hack, 1992; Suo, 1993; Kumar and Singh, 1996; Lynch, 1996; Zhang
and Tong, 1996; Hom et al., 1996; Gao, Zhang and Tong, 1996). An important issue in
studying fracture mechanics of piezoelectric materials is electric boundary conditions along the
crack faces. There are two approaches commonly used to specify the boundary conditions. One
assumes that the normal component of electric displacement along the crack faces equals zero
(Pak, 1990). This boundary condition ignores the electric field within the crack. Another treats
the crack as being electrically permeable (Mikahailov and Parton, 1990). Sosa (1991, 1992)
investigated the mechanical and electrical fields in the vicinity of circular and elliptical holes and
used asymptotic expressions for the electromechanical fields in the vicinity of a crack to study
the electric fields’ effects on crack arrest and crack skewing. Pak and Tobin (1993) found the
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ratio of the crack tip electric field to the applied field approaches unity as an elliptical cavity
reduces to a slit crack. Dunn (1994) also investigated the effects of crack face boundary
conditions on the energy release rate in piezoelectric solids. His results indicate that the
impermeable assumption can lead to significant errors regarding the effects of the electric fields
on crack propagation based on an energy release rate criterion. In a previous paper (Zhang and
Tong, 1996), we studied the boundary conditions by considering an elliptical cylinder cavity. In
the limiting process, we found that the two commonly used boundary conditions are actually
two extremes of the exact boundary conditions. Since the electric field exists in air and in a
vacuum, both the geometry and size of the crack have a great influence on fracture behavior of
these materials (Zhang, 1994; Zhang and Tong, 1996). For the case that a crack is treated as a
mathematical slit crack without any thickness, the energy release rate for crack propagation
evaluated from linear fracture mechanics is positive definite and independent of applied electric
fields when the electric field inside the crack is considered (McMeeking, 1989; Zhang and Tong
1996). On the other hand, the energy release rate is not positive definite and the electric loading
would always impede crack propagation when the electric field inside the crack is ignored (Pak,
1990; Suo et al., 1992). A mathematical slit crack opens under combined mechanical-electrical
loadings and becomes a cavity. Thus, the electric field would have a great influence on the
fracture behavior when the opened crack is considered. The self-consistent method is adopted
here to determine the crack opening and hence the energy release rate.

The following section reports the profile calculation of a slit crack opening using the self-
consistent method. Then, the energy release rate for crack or cavity propagation is evaluated
under a condition that the ratio of the minor semi-axis to the major semi-axis of the elliptical
profile of the crack opening maintains unchanged. All the derived formulas are confirmed by
finite element analysis and plotted to demonstrate explicitly the effects of electric field on the
energy release rate and the differences between the present work and others.

ANALYSIS

Self-consistent Calculation for Crack Opening Profile

c-‘l
Considering a mathematical slit crack i A
in an infinite piezoelectric material under bty bt s
combined mechanical and electrical loadings,
as shown in Fig. 1, where the crack is
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is affected by the opened crack profile. A geometrically non-linear analysis, here ;alled sc:lf-
consistent calculation, is thus adopted to determine the deformed crack profile and subsequently
the energy release rate for the crack propagation.

For a slit crack, the crack opening along the x, axis, Au, from convcntio_nal calculations
(i.c., without considering the geometrically non-linear behavior of the crack), is given by

B i 1
Au, =a[(B+B)(>:; —-d)]zsme, 0<e<m, 1)

where the superscript ‘a’ means applied, 2a is the crack lengtl}, 0 is the polar angle, B is a 4x4
matrix depending on the material properties and crack orientation, and

d=(0,0,0,d)", (2)
z, = (0‘,2,0'22,032,D2)T,

where the superscript “T” denotes the transpose of a matrix, d is a parameter relaftelgetcc)r;z:}i
clectric field inside the crack and D is the electric displacement. Clearly, the profile o

. 5 h iaxis of
opening is an ellipse with the major semu-axis of a and the minor semi-axi

b=2 [(B+§)(Z" —d)]2 Thus, the ratio ¢, of the minor semi-axis to the major semi-axis
== 2 .
2

evaluated from conventional calculation is:

[(B+B)E: -], ©)

N | =

o, =
which will be compared with the results obtained from the self-consistent calculation later.

The self-consistent method requires that the half maximum opening of the elliptical
cylinder cavity should be equal to the minor semi-axis. That means

a, =[Af@,) +Af@)], ar (0,0) “)

s . R . cfort
where o is the ratio of the minor semi-axis to the major semi-axis n the self-consiste
s

perpendicular to the poling direction and 11'2 8
. . . . . X, e . # : n on
ZP phe.d loadgngs are ap p;;ed a;so‘ in the p Ohgi T : __El calculation, the overbar denotes the conjugate of a complex, A.1s a]s:o 43)1(4 mztimxaizp:nfuln cgtion
lxrecilonf, ! e] ar:jali'uc SOtions Ta;’ 2a the material properties and crack orientation, and f(c) is a 4.-d1mcnsxon al vee ﬁr, e
;Z:ficy ac;lrar{';l;iz;te Viaro:r}:ccogt\;zrgtno?;maxﬁiz ' of o, and the remote loadings. After tedious algebra calculation, Eq. (4) is finally re-arrang
(Stroh, 1958). Under a pure mechanical (5)

3
loading, the crack profile either before or 8o+ B0, + 8,0, + 850 =0,
after deformation can be used to evaluate the
stress fields and the energy release rate as
long as the deformation is small. Under
combined mechanical and electrical loadings,
however, the crack opens and the crack
deformation is very sensitive to the electric
field inside the opened crack, which, in turn,

EERERRERE

al parameters related to the material properties, crack orientation,
o3

where go, g1, g2 and g3 are re
and the loading conditions.

Fig. 1. A slit crack in an infinite piezoelectric
medium under combined mechanical and
electrical loadings.

The Energy Release Rate for Crack or Cavity Propagation
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The energy release rate can be o5
evaluated from each of the four
thermodynamic functions: free energy, electric
enthalpy, mechanical enthalpy and full Gibbs
energy, or from each of the four associate

potentials. In the present work, we follow X3

Rice’s treatment (1968) and use the potential = X E;
associated with the electric enthalpy to . 2

formulate the energy release rate. Using the

same principal and methodology, we first
derive the energy release rate for an elliptical
cavity, as shown in Fig. 2, under the condition
that a constant ratio of the minor semi-axis to I [ ]

f borrm

the major semi-axis, o, = b/a is maintained. ' ('5-' !
22

When the elliptical cavity reduces to a slit

crack, the energy release rate will Fig- 2. An elliptical cavity in an infinite
automatically respond for crack propagation. piezoelectric  medium  under  combined
Since only two-dimensional problems are mMechanical and electrical loadings.

treated here, all properties are calculated per thickness. For the loading conditions studied in the
present work, the energy release rate is given by

J= %[(2;)’(3+§)):; —(1+0)(Z%)" (Bd + Bd) - i1+ 0 )(d - d)' (Aa, + Aa,)
(6)
—afa +a)(a+d)—2):§]r[A <p,>a +A<p > a_l]}

where X is a 4-dimensional vector for applied loadings, <> denotes a diagonal matrix, p; (i=1,
2, 3,4) are the eigen-roots with positive imaginary parts determined by the material properties
and crack orientation and a, is a 4-dimensional vector depending on the remote loadings. Eq.

(6) shows that the energy release rate for elliptical cavity growth depends on both mechanical
and electric loads, as well as on the ratio of o = b/a and the electric field inside the cavity.

When the cavity reduces to aslit crack, o« =b/a =0 and hence

d= (B+B)4,.Z“. @
2B44
Thus, the energy release rate can beexplicitly expressed in terms of the remote loads as
na —  (B+B),(B+B),
=20 (B+B)ij-—‘—ﬁ e ®)
4 5= 2B,,

Eq. (8) shows that the energy release rate relies only on the applied mechanical loads, being
independent of the applied electric load. This phenomenon was found before by McMeeking
(1989), Zhang and Hack (1992) and Zhang and Tong (1996).
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Electric Field in the Cavity and Crack

From the conventional analysis, the electric field in an elliptical cavity or a slit crack can
be formulated. Introducing E = E, —iE,, where E; and E, represent the electric field in the x,
and x, directions, respectively, leads to the following form of the electric field inside an elliptical
cavity in an infinite piezoelectric medium under combined mechanical and electric loadings:

m(1+x B, )La; +(1-x B, )La;
m*(+x B,)? —(1-x B,)*

E =-i2(B, +B,) @)

where m = (a—b)/(a+b), L is also 4x4 matrix depending on the material properties and
crack orientation, a" is a 4-dimensional vector depending on the applied loadings and material

properties. It is seen that the electric field within the cavity is uniform.
For a slit crack, the electric field inside the crack is

¢ +x B, (La; —La,)
KCBM .

E=-i(B, +B,) (10)

Eq. (10) shows that if the dielectric constant k. of the crack has a finite value, the electric field
inside the crack is also uniform.

RESULTS AND DISCUSSION
40 (m)

The present work uses the PZT-4
ceramics as a model material. The material ch
constants are given below: >

Elastic constants (10'° N/ m?):
¢, =139, ¢, =778, c,=743,
€y, =113, ¢, =256

40 (m)

Piezoelectric constants (C/ m?):
e, =—698, e, =1384,
e,s =13.44; For

Ll i

oE

Dielectric constants (107 F/ m):
K, =6.00, x, =547,
x, =885%107;

Fig. 3(a). Finite element mesh for a centered
elliptical cavity in a large piezoelectric medium

where ' and € .deaofe, sespectively, under combined mechanical and electrical loadings.

Newton and Coulomb. The dielectric
constant of vacuum, X , is also listed here

for convenience.
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In order to verify the validity of
the formulas presented in the previous
section, we resort to the finite element et
analysis and the commercial software
ABAQUS is used in the analysis. The
example considered is a finite medium
with a centered crack or elliptical cavity
under both mechanical and electrical : S
loadings.  The specimen dimensions,

finite element mesh and loading

conditions are shown in Fig. 3(a) for the |
case of a centered elliptical cavity, with ]
Fig. 3(b) being the magnification of the TN Y T T T 1777 /,
mesh around the cavity. As the medium

size is much larger than that of the crack  Fig. 3(b). Mesh around the cavity.

or cavity, the near tip solution should be

nearly the same as that for the infinite medium. 8-nodded plain strain elements were used in the
analysis.

’.’_(JI))

Fig. 4 shows the distribution of the stress 0, and electric field strength E, in front of the
right major axial apex of an elliptical cavity with the major semi-axis a=/m and the minor semi-
axis b=0.2m under combined mechanical and electrical loadings in the x, direction. As
expected, both the stress and the tlectric fields are concentrated at the apex of the cavity and
the analytical results agree well with the finite element analysis, which indicates that the
analytical solutions for an elliptical cylinder cavity in a infinite piezoelectric medium under
combined mechanical and electric loadings are all valid.

Finite element evaluation ofthe energy release rate J is based on the following formula:

J=[r(Hn - jnu, + DEn)dT, (11)
where 8 1 300

1 1 . Analytic - =8 85x10°12 1
H= Ecijklsxjskl _EK”E‘E’ —e EuE 1S 4 S gil ’;;ig.bsx:&pa()wm)_ reo
the electric enthalpy; I is an integration 6t EEM: E7=50 (KV/m)
contour around the crack tip or ellipse A g 251 (m) 1 200
apex, n is the unit normal vector to the =58 ’ b/a=02 z
contour, Gy, &;j, u;, E; and D; represent E 150 i
stresses, strains, displacements, electric ) =
fields and electric  displacements, 100
respectively. For a piezoelectric problem,
when the dielectric constant of the 50
medium inside the crack or elliptical
cavity is considered non-zero, the electric 5 ) B ) . 5
field inside the cavity makes contributions 0.0 2 4 6 8 1.0

to the J-integral (i.e., the energy release
rate), thus, the integration contour should
include the path inside the crack or Fig. 4. Distribution of stress 62, and electric field
cavity. The integration contour coincides E:z ahead of an elliptical cavity .

with the minor semi-axis when across the

Distance from the right apex of the ellipse.x, (m)

1 1 N > C
Effects of an Electric Field on the Energy Release Ralc 1953
elliptical cavity. 255 - o0
. J x,=8.85x10"% (F/m) ~Analytic i
The numerical calculations ShO\.V = 3 Fre0KVIm) ]]52 10
that the electric field inside the cavity Is S 260 | as1 (m) by '. _
uniform, which is consistent with the ¥ b/a=0.2 e £ /14 3
analytical results indicated by Eg. (9)- -3{ | S
For a given cavity, both the electric field % -285 | u 2
inside the cavity and the energy release 2 3
rate for the cavity propagation are = ;0L i
functions of the applied mechanical and 3 2
clectric loadings. Fig. 5 shows the 2 2
variations of the electric field inside the :3 275
cavity and the energy release rate with
the applied stress under a constant 280 ; L , . ) ; &6

16 -12 -8 -4 00 4 8 12 16
Applied mechanical loading o7, (MPa)

applied electric field when the cavity
medium is considered as a vacuum. The
electric field inside the cavity is about 13
i high as the applied electric fie!
2rr11<1ieisn2:easZS its absolEE)e magnitude with Fig. 5. Electric field and energy rcleas; rate as a
increasing the applied stress. The energy function of . aPplied .mechamcal loading for a
release rate increases as the absolute vacuumed elliptical cavity.

value of the applied stress increases. It

40
could hold for an elliptical cavity that the O I e 85210 Fim) s ]
energy release rate increases with 2 w0k 05,=0.8 (MPa.)'A"" A
increasing  absolute  value of a > a=l(m) .7 1o -
compressive-applied stress as long as the _:? b/a=02 &' =
upper and lower faces do not contact > 200 : 1io 3
each other. When the upper and lower z :
faces of the cavity contact, which could 2 or A _ﬁ
be the case for a slit crack under := Ansigile . w0 2
compress, the traction-free condition 2 -200 | — }JE: % -:;
along the cavity faces does not hold any -2 ; — — o0 5
more, and then the energy release rate 3 .400 | * E e |
loses its meaning. Under a constant ::' J
applied stress, Fig. 6 shows the electric 600 . 5 g 460
field inside the cavity and the energy -100 -50 0 50 100

release rate as a function of the applied
i . The electric field inside the .
zis;:nci?e;gom ; times as high as the Fig. 6. Electric field and energy release rate as a
appli)eld electric field. Either a positive or function of applied electric loading for a vacuumed
a negative applied electric field decreases elliptical cavity.
the energy release rate. When the cavity . _ .
is reduced to a slit crack, the electric field inside the crack is around 1,000 umcs as high as the
applied electric field, as shown in Fig. 7, and the energy release rate.: bccome.s {ndependent of the
applied electric loading. As shown in Figs. 5, 6 and 7, the theoretical predictions of the energy
release rate, i.e., Eqs. (6) and (8) are well confirmed by the finite c}ement analysis. With all
formulas being confirmed by finite element analysis, hereafter, we will not have to present the
finite element results in the following discussion.

Applied electric loading E7 (KV/m)-
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In Figs. 5 and 6, the medium
inside the cavity is considered a vacuum
that has the smallest dielectric constant.
To demonstrate the influence of the
cavity medium, we now consider another
extremity, i.e., an infinitely large
dielectric constant for the cavity that
represents a conducting cavity. Fig. 8
shows the electric field inside the cavity
and the energy release rate J as a function
of the applied electric loading when the
mechanical loading is constant and the
dielectric constant of the medium in the
cavity is taken as 1,000 times of the
outside  piezoelectric  medium  (ie.
K/¥33=1,000). As expected, the electric
field inside the cavity is almost zero, but
the energy release rate J is positive
definite with the change of applied
electric leading, which is totally different
from that for a vacuumed elliptical cavity
as shown in Fig. 6. The energy releise
rate J is also positive definite with the
change of applied mechanical loading as
shown in Fig. 9, which also differs from
that for a vacuumed elliptical cavity as
shown in Fig. 5 in which J could be
negative when the mechanical loading is
low and the electric loading is high. An

electrically-positive-defined energy
release rate means that the electric
loading would cause the crack

propagation rather than impede it.

As argued in the last section and
discussed above, since the effect of the
applied electric loading on a slit crack is
totally different from that on an opened
crack, it is more reasonable to determine
the final crack surface profile under
combined mechanical and electrical

Tong-Yi Zhang et al.
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Fig. 7.

Electric field and energy release rate vs.

applied electrical loading for a vacuumed slit crack.

.03 21
z - =3.47x10"® (F/m)
2 02 62=20 (MPa) 20
3 a=1 (mm) 5
w =0.2
,i 01 b/a=0.2
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2 0.00
s 418
3 -01
2
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-.03 - . . 16
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Applied electric loading £y (KV/em)

Lncrgy release rate J (N/m)

Fig. 8. Electric field and energy release rate as a

function of applied electrical
electrically conductive ellipitical cavity.

loading for an

loadings by introducing an elliptical crack geometry with a to-be-determined minor semi-axis.
Fig. 10 shows oy evaluated from the self-consistent calculation by Eg. (5), together with o for a
slit crack obtained from conventional calculation by Eq. (3) as a function of the electric loading
when the mechanical loading is constant. It is found that if the electric loading is zero, o is
equal to o and both are proportional to the mechanical loading. If the electric loading is not
zero, however, o4 is different from o, and the difference becomes larger as the magnitude of the
electric field increases. It is also found in Fig. 10 that the direction of the electric loading also
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affects the value of 0 (i.e. the opening of the cavity). Compared with the crack opening without
clectric loading, a positively applied electric loading makes the crack opening larger while a
negatively applied electric loading makes the crack opening smaller.

Since the geometry of a crack
also affects its propagation, the deformed
crack profile should be used in the
calculation of the energy release rate.
Iig. 11 shows the energy release rate
calculated using the deformed crack
profile o, as shown in Fig. 10. Since the
magnitude of o is very small under the
loading range, the energy release rate is
almost symmetric-about E;=0 when the
crack medium is considered a vacuum,
while the energy release rate is about
constant for an electrically conducting

rack. If the applied electric loading is
much larger, the influence of 0k would
«merge and the energy release rate would
he expected to be asymmetric for a
vacuumed crack and inconstant for a
conducting crack. Fig. 12 compares the
cnergy release rate obtained from the
«clf-consistent calculation with those
{rom conventional calculations. It is clear
that the resistance of the applied electric
loading to propagation of a vacuumed
crack is overestimated if the electric field
imside the crack is ingored, as shown in
Iig. 12. In Fig. 13, the deformed crack
profile o was used and the energy release
rale was fixed as the same as that when
only mechanical loading was applied, e.g.
07,=20 MPa. It is seen that for a
vacuumed crack, the applied loading
mcreases with increasing the magnitude
of applied electric loading, implying that
the applied loading will impede the crack
propagation.  For a conducting crack, a
constant energy release rate leads to to
the result that the applied mechanical

0125 70
X=5.47x10° (F/m)

z Er=5 (KV/em) 460
5 : ;
; .0120 a=1 (mm) i =
< b/a=0.2 50 3
= —
> = .
3 0ms 40 2
5 2
= 30 2
£ ot10} =
3 2
= 20 2
‘= =)
3 .0105
3 10

0100 : : 0

-40 -20 0 20 40

Applied mechanical loading o3, (MPa)

Fig. 9. Electric field and energy release rate as a
function of applied mechanical loading for an
electrically conductive elliptical cavity.

a, or o, (x10™)

F o, (0% =40MPa) L
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)
R & ,onfi/
e o

—

K =8.85x1 0% (F/m)
a=1 (mm)

- Z20MPR)
o, (o

-5 0 5 10
Applied electric loading £5 (KV/cm)

load is almost independent of the electric  Fig. 10. Comparison of a self-consistent calculati.on
with a conventional calculation for crack deformation
under combined mechanical and electrical loadings.

joad, as shown in Fig. 13.
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3
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0 1 il 1
-10 -5 0 5 10
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Fig. .1 1. Energy release rate as a function of
applied electrical loading using the crack
profile calculated by the self-consistent method.

CONCLUDING REMARKS

This paper presents a self-consistent
calculation for a deformed crack profie in
an infinite piezoelectric medium under
combined mechanical and electrical loadings.
The effects of electrical loadings on the
energy release rate for crack or cavity
propagation have been studied. The results
show that for a slit vacuumed crack, the
energy release rate is independent of the
applied electric loading while the elecirical
field inside the crack magnifies the remote
electric loading by more than 1,000 times.
The energy release rate for propagaticn of
an elliptical cavity with a constant ratio of
the minor semi-axis to the major semi-auis is
a function of both electrical and mechanical
loadings, the ellipse geometry and the
dielectric constant of the cavity. For an
electrically conductive elliptical cavity, the
energy release rate is a positive definite
function of the applied electrical and/or
mechanical loadings. However, these results

60.0

o
N
o

(3}
o
o

5t K=8.85x10"" (F/m)
50.0 - Conventional analysis
X=0
475 -
05,=40 (MPa)
a=1 (mm)
45.0 B = .
-10 -§ 0 5 10
Applied electric loading E; (KV/en)
Fig. 12. Comparison of the self-consistent
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22
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20
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Encrgy releasce rate J (N/m)
w
N
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Conventional analysis

X.=8.85x10"'"? (F/m)

Self-consistent analysis

calculation with the conventional one for
energy release rate.

x=8.85x10""? (F/m)

-10

Fig. 13.
function of applied electrical loading for a given
energy release rate.

-5 0 5 10
Applied electric loading ET (KV/em)

Applied mechanical loading as a

Effects of an Electric Field on the Energy Release Rate 1957

do not provide a linear relationship between the energy release rate and the applied electric field
al., 1983; Tobin and Pak, 1993) and the

that was observed in the indentaion tests (Yamamoto, et
fracture tests (Park and Sun, 1995). Recently, Gao, Zhang and Tong (1996) proposed, by
analogy with the classical Dugdale model, an electric strip saturation model and hence derived
the local and global energy release rates. Under small scale yielding conditions, the global
energy release rate equals to that of a linear piezoelectric crack without electrical yielding. The
local energy release rate gives linear predictions which agrees with above mentioned

experimental results.
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