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ABSTRACT

Some of the most important aspects of numerical modelling of cracking in concrete are re-
viewed. After a discussion of the three main lines in modelling cracking - discrete crack mod-
els, smeared representations and approaches using Jattice models - a concise treatment includ-
ing comparative studies is given of the various smeared crack approaches that exist to date.
Next a discussion is presented of some issues pertaining to the sensitivity of numerical results
on the fineness of the mesh and the direction of the mesh lines.
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INTRODUCTION

Three main approaches exist for modelling cracking in concrete, mortar, masonry and rocks,
namely discrete crack models (Ngo and Scordelis, 1967), smeared-crack models (Rashid,
1968), while recently the lattice models (van Mier et al., 1994) have become popular for ex-
plaining fracture processes at a detailed level.

In the first method cracking is assumed to occur as soon as the nodal force that is normal to the
element boundaries exceeds the maximum tensile force that can be sustained. New degrees-of-
freedom at that node location are created and a geometrical discontinuity is assumed to occur
between the ‘old’ node and the newly created node. In the second route of modelling the crack-
ing process is lumped into the integration points within the elements, where the stress-strain re-
Jation is modified to account for the stiffness and strength degradation that accompanies crack-
ing. Finally, in lattice models, originally devised by physicists (Herrmann et al., 1989), the con-
tinuum is replaced a priori by lattices of truss or beam elements. Subsequently, the microstruc-
ture of the material can be mapped onto these beam elements by assigning them different prop-
erties, depending whether the truss or beam element represents a grain or mortar.

Two main improvements with respect to discrete crack models are the possibilities of remesh-
ing and the use of interface elements as predefined cracks. Remeshing techniques were devel-
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oped by Ingraffea and Saouma (1985). Using linear-elastic fracture mechanics techniques it is
decided where, and in which direction a crack will propagate. Then, a new mesh is formed in
which the crack has propagated over a certain distance. Care must be taken that a proper refine-
ment is applied near the crack tip and that special elements are used which can capture the
stress singularity at the crack tip in the linear-elastic solution. A new linear-elastic fracture me-
chanics analysis is carried out for this geometrically changed structure and on the basis of new-
ly determined stress intensity factors a new propagation direction is decided upon. Crack exten-
sion is assumed in this new direction and a new mesh is set up. The process can then be repeat-
ed until complete failure.

While this procedure basically consists of a series of linear-elastic calculations, albeit in an au-
tomatised manner, the approach of Rots (1988) to use interface elements as predefined cracks is
essentially a fully non-linear approach. In his procedure interface elements of zero thickness
are inserted in the finite element mesh at locations at which a crack is expected to propagate.
These locations are chosen either on the basis of smeared-crack analyses or by assessment of
experimental data. The interface elements have dual nodes, which have the same coordinates.
As in continuum elements the stresses are sampled in integration points between the individual
node sets. When the normal stress in an integration remains below the tensile strength the
stress-strain relation in the interface is taken as linear elastic, with a high dummy stiffness in
order to practically suppress deformations in the interface. When the tensile strength is exceed-
ed in an integration point the unbalanced force thus generated may cause displacements be-
tween the two nodes of the node-sets of the interface. We obtain opening (mode-I behaviour) as
well as sliding (mode-II behaviour) along the interface element. Of course, the success of this
approach crucially depends on a correct estimate of the crack propagation path. Furthermore,
the approach is primarily applicable to localised failure where we indeed have one dominant
crack that leads to failure. If these conditions are not fulfilled a discrete-crack analysis along
these lines may be less successful.

The success of accurate predictions of the direction of crack propagation in smeared-crack fi-
nite element representations depends to a large extent on the tangential shear stiffness of the
constitutive relation. A large number of constitutive models have been proposed in the past,
which lead to different predictions for the incremental shear stiffness. Sometimes these differ-
ences are large, sometimes they are hardly discernible, which is related to the similarity of
some of the fracture formulations.

A possible way to categorise smeared-crack models is to divide them into models that are
based on a total formulation, i.e. there exists an injective relation between the stresses and the
total strains, and models that employ a linear relation between stress rate and strain rate via a
loading history dependent tangential modulus. Examples of the former category are the elastic-
ity-based fixed crack model, the rotating crack model (Cope et al., 1980), a deformation plas-
ticity theory with a Rankine type yield locus (Feenstra and de Borst, 1995) and elasticity-based
damage models, either isotropic (Mazars and Pijaudier-Cabot, 1989), or anisotropic. In the sec-
ond class of models we have the multidirectional crack model (de Borst and Nauta, 1985; de
Borst, 1987; Rots, 1988) and the Rankine plasticity model based on a flow theory of plasticity
(Feenstra and de Borst, 1995, 1996). Although major conceptual differences underly the vari-
ous formulations, remarkable similaritics exist especially between plasticity-based models and
the familiar rotating crack model when typical non-proportional load paths are simulated. On
the other hand the classical fixed crack model gives predictions that significantly differ from
most of the other approaches, in the sense that the model usually responds too stiff.

In this contribution we shall focus on the topics that have surfaced in the 1980s and have be-
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come major issues since then. Specifically, we shall address the issue of crack models, where
the emphasis will be on smeared formulations. Then, a discussion will follow of some ap-
proaches to overcome pathological mesh sensitivity.

A CATEGORISATION OF SMEARED-CRACK MODELS

Limiting the discussion to grade-1 materials a total stress-strain relation can be defined as
e=f(o.n.x), M

with f a tensor-valued function, £ a strain tensor and o the stress tensor. Eq. (1) assumes the
existence of a single tensor-valued internal variable, 7, and a single scalar valued internal vari-
able, «, which reflect the loading history of the material. Extension of this formulation to in-
clude more internal variables poses no fundamental problem, but is not necessary for our pre-
sent purpose. Alternatively, a constitutive formulation can be phrased in rate format, such that

é=f(o,6,7,x), )

whereby the dots signify differentiation with respect to a virtual time. A subclass of constitu-
tive models that fits within the framework of eq. (2) are the incrementally-linear models,

£=C(o,n,x)6 , 3
with C a tangential compliance tensor.

A simple model that falls into category (1) is elasticity: £ = f (o), which for linear elasticity re-
duces to £ = C¢a, with C° the fourth-order elastic compliance tensor with the Young’s modulus
E and the Poisson’s ratio v as constants for the isotropic case. History dependence can be in-
corporated in a simple manner by degrading the elastic compliance via a scalar-valued internal
parameter @:

C’o
£= :
l-o

or with D¢ =[C°]™',

(4)

o=(1-w)D (5)

In this isotropic elasticity-based damage theory the damage variable @ grows from zero to one
(complete loss of integrity). Damage growth is possible if the damage loading function

fleeq  K)=Eeq—K (6)

vanishes. In eq. (6) €4 is the equivalent strain, which can be a function of the strain invariants,
the principal strains as in Mazars and Pijaudier-Cabot (1989):

' 3
6‘eq: Z(< £ >)2 L] N
=]

with ¢, the principal strains, and < &; >=¢; if £;>0 and < & >= 0 otherwise, or the local ener-
gy release rate due to damage

1
€q=7 £7Ce . (8)
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The parameter x starts at a damage threshold level x, and is updated by the requirement that
during damage growth f=0. In particular, the damage loading function f and the rate of the
history parameter x have to satisfy the discrete Kuhn-Tucker conditions

f<0 , k20 , f&=0. ()]
Damage growth occurs according to an evolution law F(x) such that

w=F(x) . (10)

Isotropic damage models have been used successfully in predictions of crack propagation in
plain and reinforced concrete (Mazars and Pijaudier-Cabot, 1989). The disadvantage of an
isotropic damage model is that possible compressive strut action is eliminated. This disadvan-
tage particularly holds for the analysis of reinforced concrete structures.

Directional dependence of damage evolution can be incorporated by degrading the Young’s
modulus E in the direction of the major principal stress. When, for planar conditions, distinc-
tion is made between the global x, y-coordinate system and a local n,s-coordinate system
aligned with the principal stress axes one obtains in the local coordinate system the secant tan-
gential stiffness relation

onsstnSEns ’ (1‘)
with *D, defined as
(1-w)E 0 O
*Dps= 0 E 0 |, (12)
0 0 G
with @ =w(g,,) and B = B(€,,) functions of the normal strain in the local n-direction. The (se-
cant) shear reduction factor 3 represents the degradation of the elastic stiffness G and is gradu-

ally reduced from one to zero. Alternatively, B can be assigned a constant value between zero
and one.

Let now ¢ be the angle between the n and x axes and assume that the directions of principal
stress and strain coincide throughout the damage process. Then, the standard tranformation
rules for second order tensors apply:

£ns =T(P)Exy (13)
and

0,5 =T(9)0yy » (14)
with T the standard transformation matrix. Combination of egs. (11), (13) and (14) yields

04y =T7(9) D T(9)Esy - (1s)

Eq. (15) incorporates the traditional fixed crack model and the rotating crack model. The only
difference is that in the fixed crack model the inclination angle ¢ is fixed when the major prin-
cipal stress first exceeds the tensile strength (¢ =@,), while in the rotating crack concept ¢
changes such that the n-axis continues to coincide with the major principal stress direction.
This difference has profound consequences when deriving the tangential stiffness, especially
with regard to the shear term. For the fixed crack model differentiation of eq. (15) yields
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dxy =TT(¢0)DnsT(¢O)éxy ’ (16)
with D, the local material tangential stiffness matrix:

(1 —m_wlgnn)E 0 0
D, = 0 E 0|, an
B'YusG 0 A5G

where the prime signifies differentiation with respect to €,,. From eq. (17) we observe that for
non-constant B the local material tangential stiffness matrix becomes non-symmetric. On the
other hand, the requirement of coaxiality between stress and strain tensors that is imposed in
the rotating crack model results in a considerably more complicated expression (BaZant, 1983;
Willam et al. 1986; Rots, 1988)

Gy = [TT (@)D A-L)T(9) + 2T (9LT(P)1éyy (18)

with T the identity matrix, L =diag[0,0,~ 1], and a =(0,, —0,,)/[2(£,, — £5)]. Comparison of
(16) and (18) shows that the tangential shear stiffness is now given by « instead of BG. As we
shall show in the example to be discussed in the next paragraph o can become negative, lead-
ing to a reduction of existing shear stresses and thereby also reducing the existence of locked-in
stresses (Rots, 1988).

In all formulations discussed above the strains were recoverable. Upon removal of the load the
strains vanish. This is not so for a deformation type plasticity model, which can also be cast in
the format (1). In it the total strain is partitioned into an elastic part £° and an inelastic part ',
as follows

e=€e"+&' . 19)

The elastic strains are related to the stresses via
€ _ €
e5=Clo . 20
while the inelastic strains are derivable from a plastic potential f

. of
=1
do @
vyhere the plastic multiplier A and f = f(o .7, ) must satisfy the discrete Kuhn-Tucker condi-
tions 120, f<0 and fA=0. Accordingly, f also takes the role of a loading function. Com-
bining egs. (19)-(21) results in
of

e=Cc+1=—,
do @

which, upon elaboration, can be shown to fit the format (1).

We now select the Rankine (major principal stress) criterion as loading function and plastic po-
tential and we introduce the reduced stress tensor &=o —7, with 77 the so-called back stress
tensor, which governs the amount of kinematic hardening. In a plane-stress configuration the
major principal stress can be expressed in terms of the stress vector with aid of Mohr’s circle
and one obtains

f=A5EPE+ x50 23
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with the equivalent stress & a function of the internal parameter x, and y a factor which sets the
ratio between kinematic hardening/softening and isotropic hardening/softening. Pure kinematic
hardening is obtained for y =0 and y =1 sets the other limiting case of pure isotropic harden-
ing/softening. The projection matrix P and the projection vector z are given by

1 1
- -- 0
2 2
1 1
P=|=- -0 (24)
2 2
0 0o 2
and
z=[1,1,0]" 25)

respectively. The equivalent stress &(yx) is the current uniaxial tensile strength which starts at
the initial tensile strength f, and is gradually reduced according to some tension-softening
model. The internal parameter x is assumed to be a measure for the internal damage and is

supposed to be determined by a work-hardening hypothesis
kG=£ETE . (26)
The back stress 7 is given by
)
7=Al1-PEA gi , @mn
o

with E, a secant stiffness modulus and A=diag[1,1,1/2]. A rationale for this formulation has
been given by Feenstra and de Borst (1995).

Alternatively, the Rankine yield criterion (23) can be used within the framework of a flow theo-
ry of plasticity. While the strain decomposition (19) and the relation for the elastic strains (20)
remain unaffected, a direct expression for the inelastic strain in the sense of eq. (21) is no
longer assumed. Instead, an expression for the inelastic strain rate is adopted

. of

=1, 28
o (28)

where the plastic flow rate 4 must satisfy the Kuhn-Tucker conditions: 1>0, f<0and fAi=0.
In a similar spirit we now have to define evolution equations for the rate of the internal harden-
ing/softening parameter x

kG =£&T¢, (29)
and the back stress rate

; )
7=A(1-y)E,A f (30)

50_— .
It is noted that differentiation of egs. (19)-(20) and combination with eq. (28) results in
. 0
s'=C°(r+A—f:, 31
do
which, upon further elaboration can be shown to fall within the format (3).

The fundamental differences of the formulations discussed so far will be elucidated with an el-
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Fig. 1. Tension - shear model problem: (a) tension up to cracking; {(b) biaxial tension with
shear beyond cracking.

_.0.20 y
a initial shear modulus
§ rotating crack model
= 0.10 Rankine isotropic
— fixed crack model
b? 0.0 (5=0.05)
ﬁ_ankimt:
inematic
00— 0 15 20
Ve [107]

Fig. 2. Total formulation of the constitutive models.

ementary problem proposed by Willam et al. (1986), in which a plane-stress element with unit
d}mensions is loaded in biaxial tension and shear. This causes a continuous rotation of the prin-
cipal strain axes after cracking, as is typical of crack propagation in smeared crack finite ele-
ment analysis. The element is subjected to tensile straining in the x-direction accompanied by
lateral Poisson contraction in the y-direction to simulate uniaxial loading. Immediately after
the tensile strength has been violated, the element is loaded in combined biaxial tension and
shear strain, Fig. 1. The ratio between the different strain components is given by
Agyy Mgyt Ay, =0.5:0.75: 1. The reference set of material parameters is: Young’s modu-
lus E = 10,000 MPa, Poisson’s ratio v = 0.2, tensile strength f, = 1.0 MPa. A linear strain soft-
ening diagram with a fracture energy G¢ = 0.15 x 107 N/mm has been used.

The behaviour of the different formulations for smeared cracking can be studied in detail with
this problem. The constitutive behaviour will be compared with respect to the shear stress -
shear strain behaviour. The first issue which will be treated is the different behaviour of the
models formulated in the total strain concept. The comparison between the isotropic damage
model, the rotating crack model and the Rankine deformation plasticity model with isotropic
and kinematic hardening should make clear which models are capable of predicting a flexible
shear siress - shear strain response. The second issue is the comparison of the rotating crack
model and the Rankine plasticity model within an incremental format. Because the response of
mode]s with a total formulation is in general more flexible than the response of models with an
incremental formulation, we expect that the Rankine plasticity model with an incremental for-
mulation will show a less flexible shear stress - shear strain response, but the comparison
should provide insight if this less flexible response is still acceptable.
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- initial shear modulus
damage model, eq.(7)
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e
=

rotating damage, eq.(8)

crack model
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Fig. 3. Damage models and the rotating crack model.
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Fig. 4. Elementary tension-shear problem for G¢ = oo.

The shear stress - shear strain response of the fixed and rotating crack models and the deforma-
tion theory based plasticity models is shown in Fig. 2. The fixed crack model has been used
with a shear reduction factor 4 = 0.05, which results in a monotonically increasing shear stress
with increasing shear strain, Fig. 2. The rotating crack model shows an implicit shear softening
behaviour which has been observed previously (Willam et al., 1986; Rots, 1988). It is interest-
ing that the same behaviour occurs for the deformation plasticity model either with isotropic or
with kinematic hardening. The two formulations are in fact indiscernible until the shear stress
has almost softened completely. Then the isotropic and the kinematic hardening models yield
different responses which is due to the fact that with isotropic hardening it is impossible for the
shear stress to become negative for positive increments of the shear strain component of the
strain vector. It is obvious from Fig. 2 that the differences between the various models are
small. Only the fixed crack model gives a completely different response.

Although the tendencies are the same, somewhat larger differences exist between the rotating
crack model and the deformation-type plasticity theories on one hand and, on the other hand,
the isotropic damage models as formulated in egs. (5)-(10). In particular the shear stress re-
sponse is stiffer, although to a lesser extent for the equivalent strain definition via the local en-
ergy release rate (eq. (8)) than for that of Mazars (eq. (7)), Fig. 3.

The limiting case with no softening (G = oo) confirms that the different formulations within
the total strain concept result in a similar behaviour. The shear stress-shear strain responses of
the rotating crack model and the Rankine plasticity model are shown in Fig. 4. The response is
identical for all models with a total formulation. It is clear from this figure that although no
softening has been assumed, the shear siress-shear strain response shows an implicit softening
behaviour. Fig. 4 also shows the response of the Rankine model formulated within an incre-
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mental concept, which displays a shear stress-shear strain response that is less flexible, but still
results in an implicit shear softening.

CRACKING, DAMAGE AND LOCALISATION OF DEFORMATION

A major problem when using a standard, rate-independent continuum for modelling degrada-
tion processes such as smeared cracking is that beyond a certain level of damage accumulation
the governing set of partial differential equations locally changes type. In the static case the el-
liptic character of the set of partial differential equations is lost, while, on the other hand, in the
dynamic case we observe a change of a hyperbolic set into an elliptic set. In both cases the rate
boundary value problem becomes ill-posed and numerical solutions suffer from pathological
mesh sensitivity.

The inadequacy of the standard, rate-independent continuum to model failure zones correctly is
due to the fact that force-displacement relations measured in testing devices are simply mapped
onto stress-strain curves by dividing the force and the elongation by the original load-carrying
area and the original length of the specimen, respectively. This is done without taking into ac-
count the changes in the micro-structure that occur when the material is so heavily damaged as
in fracture processes. Therefore, the mathematical description ceases to be a meaningful repre-
sentation of the physical reality.

To solve this problem one must either introduce additional terms in the continuum description
which reflect the changes in the micro-structure that occur during fracture, or one must take in-
to account the viscosity of the material. In both cases the effect is that the governing equations
do not change type during the damage evolution process and that physically meaningful solu-
lions are obtained for the entire loading range (regularisation procedures). It is emphasised that
although concrete can be regarded as a disordered material, the introduction of stochastic distri-
butions of defects does not replace the need for the introduction of regularisation procedures
(Carmeliet and de Borst, 1995). For a proper description of failure in concrete both enhance-
ments are necessary: enrichment of the continuum by higher-order terms, either in space or in
time, and the introduction of the occurrence of material flaws as a stochastic quantity.

As an intermediate solution between using the standard continuum model and adding higher-
order terms the Crack Band Model has been proposed (BaZant and Oh, 1983), in which the
area under the softening curve is considered as a material parameter, the so-called fracture en-

ergy:
G,:jadu:jas(s)ds. ©2)

When we prescribe the fracture energy Gy as an additional material parameter the global load-
displacement response can become insensitive to the discretisation. In finite element calcula-
tions the crack localises in a band that is one or a few elements wide, depending on the element
type, the element size, the element shape and the integration scheme. In Feenstra and de Borst
(1996) it is assumed that the width over which the fracture energy is distributed can be related
to the area of an element

h = a, VA, = a,,( TS det(J) we w, ) 33)
n=1

=1

in which w; and w, the weight factors of the Gaussian integration rule as it is tacitly assumed
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that the elements are integrated numerically. The local, isoparametric coordinates of the inte-
gration points are given by & and 7, and det(J) is the Jacobian of the transformation between
the local, isoparametric coordinates and the global coordinate system. The factor e, is a modi-

fication factor which is equal to one for quadratic elements and equal to V2 for linear elements
(Rots, 1988).

Although the introduction of a fracture energy is a major improvement in calculations using
any smeared-crack concept, locally nothing has altered and localisation continues to take place
in one row of elements (or better: one row of integration points). This is logical, since the loss
of ellipticity still occurs locally, even though the energy that is dissipated remains constant by
adapting the softening modulus to the ¢lement size. For numerical simulations this implies for
instance that severe convergence problems are usually encountered if the mesh is refined or if
in addition to matrix failure the possibility of interface debonding between matrix and grains is
modelled by inserting interface elements in the numerical model (Rots, 1988). Also, the fre-
quently reported observation still holds that the localisation zones are biased by the discretisa-
tion and tend to propagate along the mesh lines.

The deficiency of the standard continuum model with regard to properly describing strain local-
isation can be overcome by introducing higher-order terms in the continuum description, which
are thought to reflect the microstructural changes that take place at a level below the continuum
level, for instance crack bridging phenomena in concrete (van Mier, 1991). A number of sug-
gestions have been put forward for non-standard continuum descriptions that are capable of
properly incorporating failure zones, see de Borst er al. (1993) for an overview. Herein we shall
limit ourselves to non-local and gradient damage models.

NON-LOCAL AND GRADIENT DAMAGE MODELS

In a non-local generalisation the equivalent strain £.q is normally replaced by a spatially aver-
aged quantity (Pijaudier-Cabot and Baiant, 1987):

fEeq,K)=Eq—K , (34)

where the non-local average strain .4 is computed as:
£ = [ EOex+9)aV | V,00= [ g)aV 3%
AR R J

with g(s) a weight function, e.g., the error function, and s a relative position vector pointing to
the infinitesimal volume dV. Alternatively, the locally defined history parameter x may be re-
placed in the damage loading function f by a spatially averaged quantity:

fleeq s K)=Eq—K , (36)

where the non-local history parameter & follows from:

_ 1 _
=g ! g(s)c(x+s)dV , V,(x)—‘_! g(s)dV . a7

The Kuhn-Tucker conditions can now be written as:

f<0, £20 , fk=0. (38)
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Non-local constitutive relations can be considered as a point of departure for constructing gra-
dient models. Again, this can either be done by expanding the kernel £¢q of the integral in (35)
in a Taylor series, or by expanding the history parameter x in (37) in a Taylor series. First, we
will expand &, and then we will do the same for x. If we truncate after the second-order terms
and carry out the integration implied in (35) under the assumption of isotropy, the following re-
lation ensues:

Eeq=Ecq+TV’ecq » (39)

where ¢ is a material parameter of the dimension length squared. It can be related to the aver-
aging volume and then becomes dependent on the precise form of the weight function g. For
instance, for a one-dimensional continuum and taking

1 ek

g(s)= ol

we obtain & = 1/212. Here, we adopt the phenomenological view that \C reflects the length
scale of the failure process that we wish to describe macroscopically.

(40)

Formulation (39) has a severe disadvantage when applied in a finite element context, namely
that it requires computation of second-order gradients of the local equivalent strain £.4. Since
this quantity is a function of the strain tensor, and since the strain tensor involves first-order
derivatives of the displacements, third-order derivatives of the displacements have to be com-
puted, which necessitates C'-continuity of the shape functions. To obviate this problem, eq.
(39) is differentiated twice and the result is substituted in eq. (39). Again neglecting fourth-
order terms then leads to
Boq— TV Eq=Ecq - @n

When & is discretised independently and use has been made of the divergence theorem, a
C’-interpolation for & suffices (Peerlings et al., 1996).

Higher-order continua require additional boundary conditions. With eq. (41) governing the
damage process, either the averaged equivalent strain £ itself or its normal derivative must be
specified on the boundary S of the body:

q=8 of NVE=Z,, (42)
with n the outward normal vector to the boundary of the body S. In the example calculations
the natural boundary condition &,, =0 has been adopted.

In a fashion similar to the derivation of the gradient damage models based on the averaging of
the equivalent strain &, we can elaborate a gradient approximation of (37), i.e., by deveioping
x into a Taylor series. For an isotropic, infinite medium and truncating after the second term we
then have

k=x+cVk, (43)

where the gradient constant ¢ again depends on the weighting function. Interestingly, this ex-
pansion directly leads to a formulation in which a C’~interpolation for x suffices.
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