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ABSTRACT

This paper deals with some recent work of the authors in the areas of integrity of composite struc-
tures and aging metallic aircraft. The first topic deals with a fracture criterion for predicting the on-
set of propagation of a delamination crack between two dissimilar laminae of arbitrary ply angles.
This criterion assumes that the fracture of a delamination crack is dependent upon the criticality
of the stress concentration near a damage radius ahead of the delamination crack tip. It is shown
that by introducing the damage radius as the characteristic length in the definition of the stress
intensity factors, the comparisons of the stress concentration near the damage radius can be made
based on the stress intensity factors. To calculate the stress intensity factors for an interfacial crack
in an anisotropic bimaterial continuum, a numerical method based on the virtual crack closure in-
tegral approach has been developed. In the second topic, methodologies for elastoplastic analyses
of stability of multiple cracks are presented: (i) a superposition method to construct solutions for
multiple cracks (as in a multiple-site-damage situation in aging metallic aircraft), subjected to ar-
bitrary crack surface tractions, in an infinite domain; (ii) a procedure for elastoplastic analyses of
multiple cracks in a finite body, using the finite element alternating method and an initial stress
type iteration method; and (iii) a procedure for elastoplastic crack growth analyses.

KEYWORDS
Fracture criterion, interfacial crack, anisotropic bimaterial continuum, virtual crack closure, finite
element alternating method, elastic-plastic, crack growth, multiple site damage.

1 Interfacial Fracture Mechanics for Composite Debonding

The mixed-mode stress intensity factors for an interfacial crack between dissimilar isotropic media
were first defined by Williams (1959), and Rice and Sih (1965). They have found that, when the
linear-elastic-fracture-mechanics (LEFM) theory is employed, the stress oscillates and the crack
surfaces overlap near the interfacial crack tip. Rice (1988), however, has justified that this solution
still makes engineering sense for small scale nonlinear material behavior and a small scale contact
zone at the crack tip. Furthermore, Rice (1988) has also presented a fracture criterion based on
the total energy release rate and the phase angle of the ratio of stress intensity factors. Since then,
this fracture criterion has been well accepted in the area of interfacial fracture mechanics for an
isotropic bimaterial continuum. However, this criterion cannot be easily applied to a delamination
crack between two dissimilar laminae of arbitrary ply-angles. In this research, a new fracture
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criterion is introduced. This criterion assumes that the onset of propagation of a delamination
crack in a composite laminate is dependent upon the criticality of the stress concentration near
a damage radius ahead of the delamination crack tip. Furthermore, by introducing the damage
radius as the characteristic length in the definition of the stress intensity factors, the asymptotic
stress fields near the damage radius would decouple with their respective stress intensity factors.
Henceforth, this fracture criterion based upon the comparisons of the stress concentration near the
damage radius can be simplified using the stress intensity factors instead.

In order for this fracture criterion to be accepted for general applications, it would be es-
sential that the individual components of the mixed-mode stress intensity factors for an interfacial
crack be calculated efficiently and accurately. The stress intensity factor, used in the present re-
search, for an interfacial crack in an anisotropic bimaterial continuum is based on the definition
proposed by Wu(1989), Qu and Li(1991) and Qu and Bassani(1993). Based on this definition,
Chow, Beom and Atluri (1995) have developed the hybrid stress element method and the mutual
integral method to compute the stress intensity factors for an interfacial crack between dissimilar
anisotropic media. However, these methods required the knowledge of the asymptotic stress and
displacement fields around the interfacial crack tip. Since the asymptotic stress and displacement
fields involve complex numbers, the calculation of the stress intensity factors using these methods
require a considerable programming effort. To significantly reduce the complexity of calculating
the stress intensity factors for an interfacial crack, Chow and Atluri (1995) have developed a nu-
merical method based on the virtual crack closure integral approach. This approach first calculates
the mixed-mode energy release rates, and then relates the energy release rates to the mixed-mode
stress intensity factors. To determine if mixed-mode stress intensity factors can accurately predict
the onset of propagation of delamination cracks, fracture analysis has been performed on various
laminates under uniaxial tension load. In zddition, an analytical study has been performed to pre-
dict the post-buckling strength of stiffened laminated composite panels. This study is meant to
complement the experimental study by Starnes, Knight, and Rouse (1985).

1.1 Fracture Criterion for Delamination Crack

Consider an interfacial crack between two laminae, (6, ¢], where the ply angles of the upper and
lower plies are § and ¢ respectively. For a crack in a homogeneous material, in which 6 is equal
to ¢, the singular stress field along the interface can be decoupled into three individual modes: 032
relates to A, o1 relates to Ky, and o3 relates to K111, where z, is along the crack, ', is normal
to the crack plane, and x; is along the crack front. However, when @ is not equal to ¢, there exists
an oscillation index, ¢, in the singular stress solution. This oscillation index, ¢, is a function of the
material properties of the plies with angles § and ¢. Because of this oscillation index, the singular
stress field cannot be decoupled into the three unique individual modes. Each of the singular stress
fields along the interface is a function of the three stress intensity factors coupled by the bimaterial
matrix function Y (r'¢). Since the matrix Y (r') is dependent upon the material properties of the
bimaterial continuum, the relation between the stress intensity factors and the singular stress field
differs for each set of [0, ¢]. Hence, the comparisons of singular stress field of a delamination
crack in different ply lay-ups cannot be made based on the mixed-mode stress intensity factors.

In the present study, the fracture criticality of a delamination crack between two dissimilar
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laminae is assumed to be determined by the stress magnitudes near a critical damage radius. This
damage radius defines a region with considerable fiber/matrix damage as well as nonlinear material
behavior. By redefining the stress intensity factors with a characteristic length, Chow and Atluri
(1996) have shown that the relationships between the asymptotic singular stress fields along the
interface and the stress intensity factors would decouple near the characteristic length. As a result
of this decoupling effect, along the interface near the damage region, the stress intensity factor of an
interfacial crack has a physical interpretation similar to the stress intensity factor of a homogeneous
crack. Henceforth, this fracture criterion based upon the comparisons of the stress concentration
near the damage radius can be simplified using the stress intensity factors instead.

Consider an example of a delamination crack between the [0/90] laminate where the 0° lam-
ina denotes that the fiber direction is along the out-of-plane direction, while the 90° lamina denotes
that the fiber direction lies parallel to the crack. Since all of the experimental fracture data avail-
able for the critical stress intensity factor, K¢, are based on a delamination crack in a unidirectional
laminate, a question arises on whether the fracture data for the [0/0] or [90/90] laminate could be
used to predict the onset of a delamination crack in the [0/90] laminate. Using Irwin's approxima-
tion and the experimental data for T300-5208 unidirectional laminate, the damage radius can be
approximated with the ply thickness of a single lamina. By defining the characteristic length as the
ply thickness, it can be shown that the stress distributions along the interface of a [0/90] laminate
and a homogeneous laminate ([0/0] or [90/90]), for any stress intensity factors k.., are very simi-
lar except for a small region where there is considerable material nonlinearity and damage. Since
the fracture of the delamination crack is assumed to be based on the stress concentration near the
damage radius, the critical stress intensity factor for [0/90] laminate, I;'{O/QQ]C, should be related
to either the value of 1;'[0/0167 or 1;'[90/9010. In addition, Lucas (1992) has performed some exper-
iments on the fracture of a delamination crack in unidirectional laminates of different ply angle
and found that the fracture toughness of a [90/90] laminate is less than that for a [0/0] laminate,
1;’[90/9010 < 1;'[0/010- Since a delamination crack between two dissimilar laminae can fracture at
either the upper or lower lamina, it is reasonable to assume that the delamination crack would frac-
ture at the material of lower fracture toughness. Hence, using this as;umption, the critical stress
intensity factor for [0/90] laminate, 1;'[0 /90jc» would be postulated as K[go/90)c-

Since the nature of the stress field near an interfacial crack is often defined by mixed-mode
stress intensity factors, the fracture criterion to predict the onset of a delamination crack growth
can be slightly modified as:

B 1 Tkal [Ku 2
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11'0 > Rc — interfacial crack failure

where 6, is a non-dimensional constant dependent on the angle between the crack front and the
fiber's direction, and 1;"0 is the normalized stress intensity factor. The critical stress intensity fac-
tors, (K¢, Krrc, Kiiic), are defined as the critical values for a delamination crack in a [90/90]
laminate. For this fracture criterion, the delamination crack would fracture when Athe normalized
stress intensity factor, I;},, exceeds a critical normalized stress intensity factor I{C.A Chow and
Atluri (1995, 1996b) have demonstrated that the normalized stress intensity factor, i',, does not
change significantly when the choice of the characteristic length is reduced by an order of a mag-
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Figure 1: Quarter-point singular elements surrounding the crack tip

nitude or two. Based on the experiments performed by Lucas (1992), 0 4. for [90/90] laminate is
1.00, 6, for [45/45]is 1.15, and 6, for [0/0] laminate is 1.61. This experimental result indicates
that the [90/90] laminate has the lowest fracture toughness followed by the [45/45] laminate and
then the [0/0] laminate. For a delamination crack between dissimilar laminae, the constant ..
can be obtained using the assumptions discussed above, in which the bimaterial interfacial crack
would fail at the material with a lower fracture toughness. For example, the constant for [45/90]
and [45/0] would have the same values as [90/90] and [45/45] respectively.

1.2 Virtual Crack Closure Integral Method

According to Irwin (1958), the work required to extend a crack by an infinitesimal distance A is
equal to the work required to close the crack to its original length. Thus, the energy release rate for
mode I and mode II deformations can be expressed as

L[ loa(r)6a(A =) dry  Gu=o [ 51(A = 1)) d
Gi=sx [ bmn&a—nldr, Gu=gp [Mlonaa-rld @

where o is the stress distribution ahead of the crack tip, and ¢ is the crack opening displacement
behind the crack tip. Here, the crack-axis is along the z, axis and normal to the z axis as indicated
in Fig. 1. For a crack in a homogeneous domain, there exists no coupling between o2(r) and
§1(A —r), and between o12(r) and §2(A —r). However, these couplings do exist for an interfacial
crack between two dissimilar media. As aresult, a coupled energy release rate is introduced here
as L A

Gr-11 = Z./o [o12(r) 82(A = ) + 022(7) 81 (A —7)] dr (3)

The procedure to obtain these energy release rates from finite element solutions were given by
Rybicki and Kanninen (1977) and Raju (1987).

For an orthotropic bimaterial aligned with the interface crack coordinate system (e.g., a [0/90]
laminate where the fibers are parallel to the crack front in one material and perpendicular in the
other), the stress field along the interface at a distance r ahead of a crack tip is given by Qu and
Bassani (1993) as:

27r

21/2 Ry
) o0 413, 012 =

)
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and the crack opening displacements at a distance r behind the crack tip are
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where C;jy is the stiffness matrix that relates the stresses, o, to strains, €;;. The subscripts #1
and #2 refer to the materials above and below the interfacial crack. By substituting Eq. (2) into the
mixed-mode energy release rates, Chow and Atluri (1995) have obtained the simple relationships
between the stress intensity factors and the energy release rates as:
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and the constants in the matrix for Eq.(8) are
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The constant A is the length of the crack tip element shown in Fig. 1. The squares of the stress
intensity factors, K7 and A7}, can be easily solved from the linear equation in Eq.(8). The signs for
the stress intensity factors, K and Ky, can be ascertained from the crack opening displacements.



1890 Atluri et al.

1.3 Validation of the Fracture Criterion for a Delamination Crack

To validate the fracture criterion based on the mixed-mode stress intensity factors, Chow and Atluri
(1996a) have performed a fracture analysis on laminates under uniaxial tensile load. The mixed-
mode stress intensity factors in the fracture criterion are normalized with the critical values ob-
tained from the experimental data of double cantilever beam specimens. By comparing the nu-
merical results with some experimental observations, it has been shown that the calculated stress
intensity factors can be effectively used as the fracture parameters to predict the onset of propa-
gation of delamination cracks in composite laminates when the crack propagates in a 2-D fashion
as assumed in the numerical model. In this fracture analysis, the inability of the fracture criterion
based on the total energy release rate to correctly predict the failure strain has also been demon-
strated.

In addition, Chow and Atluri (1996b) have also conducted an analytical investigation to pre-
dict the post-buckling strength of laminated composite stiffened panels under compressive loads.
The results from this study are compared with an experimental investigation conducted by Starnes,
Knight, and Rouse (1987). It is found that for the eight different specimens that are considered in
this study, the calculated critical energy release rate for the propagation of the edge delamination
crack in each specimen differs substantially from those for the others; hence it may be concluded
that the total energy release rate would not be a suitable fracture parameter for predicting the post-
buckling strength of the stiffened panels. On the other hand, using the fracture criterion based on
the critical mixed-mode stress intensity factors, the predicted post-buckling strength of the stiff-
ened panels compares quite favorably with the experimental results and the error of prediction
is less than 10%. Furthermore, by applying the criterion of critical mixed-mode stress intensity
factors on a simple damage model, the present analysis is able to predict the significant reduction
in the post-buckling strength of stiffened panels with a damage due to a low-speed impact at the
skin-stiffener interface region.

2 Finite Element Alternating Method

Fracture mechanics problems can be solved using a number of different methods, including finite
element and boundary element methods, singular/hybrid finite elements, alternating method, and
the use of domain-independent and path-independent integrals, etc [See Atluri(1986), Atluri and
Nishioka(1989), Wang and Atluri(1996) for comprehensive discussions and detailed summaries].
Of these, the finite element (or boundary element) alternating method is considered to be a very
efficient and accurate method.

The finite element alternating method (FEAM) solves for the cracks (including surface cracks)
in finite bodies by iterating between the analytical solution for an embedded crack in an infinite
domain, and the finite element (or boundary element) solution for the uncracked finite body. The
cohesive tractions at the locations of the cracks in the finite element (or boundary element) model
of the uncracked body, and the residuals at the far field boundaries in the analytical solution for
the infinite body, are corrected through the iteration process. Essentially, the alternating method is
a linear superposition method(see Fig. 2]. Fracture mechanics parameters can be found accurately
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Figure 2: Superposition principle for the finite element alternating method

because the near crack tip fields are captured exactly by the analytical solution. Coarser meshes
can be used in the finite element analysis because the cracks are not modeled explicitly. In a crack
growth analysis, or in conducting a parametric analysis of various crack sizes, the stiffness of the
uncracked body remains the same for all crack sizes. Thus, the global stiffness matrix of the finite
element model is decomposed only once. In the most common finite element analysis for fracture
problems, it is necessary to use very fine meshes (or adaptive mesh refinements) around the crack
tips, and to decompose the global stiffness matrix every time a crack size changes. Thus, the alter-
nating method is very efficient in saving both time in the computational analysis and human effort
in the mesh generation.

The finite element alternating method can be applied to the elastic-plastic analysis of cracks
when it is used in conjugation with the initial stress method, even though the alternating method
itself is based on the superposition principle which is valid only for linear problems. The initial
stress approach converts the elastic-plastic analysis into a series of linear elastic steps, in which
the superposition principle holds. The elastic-plastic finite element method was first presented by
Nikishkov and Atluri (1994). It was used in 2-D elastic-plastic analyses of wide-spread fatigue
damage in ductile panels [Pyo, Okada and Atluri (1994,1995)]. The method was successfully used
to simulate the stable crack growth in the presence of multiple site damage in Wang, Brust and
Atluri(1995a,b,c).

2.1 Solutions for multiple embedded cracks in an infinite domain

Solutions for multiple embedded cracks in an infinite body, subjected to arbitrary crack surface
tractions, can be constructed using the solution! for a single crack in an infinite domain subjected

I Analytical solutions for a single embedded 2D crack in an infinite domain, subjected to point loads or piecewise
linear/constant loads at the crack surface, may be found in Wang and Atluri(1996). Analytical solutions for an embed-
ded elliptical crack, subjected to arbitrary polynomial distributed crack surface traction, can be found in Vijayakumar
and Atluri (1981), Nishioka and Atluri (1983).
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to arbitrary crack surface loading. Analytical solutions for multiple embedded cracks in an infi-
nite domain are available only for some special configurations, such as multiple collinear cracks
subjected to arbitrary crack surface tractions [Muskhelishvili (1953)]. However, it is in general
easier to construct the solution of multipleembedded cracks in an infinite body using the solution
for a single embedded crack. Solutions for arbitrarily located cracks can be obtained using this
approach. Even when the analytical solution is available, such as for the multiple collinear cracks
in an infinite domain, it can be more accurate and efficient to build the multiple crack solutions
from that for a single crack.

In the context of the finite element alternating method, it seems natural to use the Schwartz-
Neumann alternating method to obtain the analytical solution iteratively. This approach has been
used by many authors, such as O' Donoghue, Nishioka and Atluri (1985), Chen and Chang (1990),
etc. Using the alternating method and the solution for the single crack in the infinite domain,
residuals induced by closing the other cracks are erased by reversing them and applying them as
loads on the crack surfaces.

However, the solution can be obtained using a non-iterative approach in a simpler and more
efficient fashion. Consider the superposition of n solutions of single cracks in the infinite body.
Each of these n solutions involves only ore crack. Denote the £'th solution as Sk, where the crack
is at the same location as that of the k' th crack of the original multiple-crack problem. The crack
surface traction Ty, for the problem Si (k=1,2,..., n) is to be determined(see Fig. 3).

given load undetermined load

S P

Figure 3: Superpose single crack solutions

The traction at the location of the j'th crack in the the problem S can be found for any load
Tk, i.C.
= KTy Gik=120..5m (13)

It is noticed that K[:] = I (k = 1,2,...,n) are identity operators, because the tractions at the
crack surfaces are the same as the applied loads.

The superposition of the n solutions should give back the original problem, i.e. the tractions
at the locations of the crack surfaces should be the same as the given crack surface loads. Thus,
the linear system to be solved is

Stp=Y KWT.=T; j=12....n (14)
k=1 k=1
Denote collectively the undetermined crack surface loads T (k = 1,2,...,n) as T, and the

given loads T}, (k = 1,2,....n) as T” so that Eq. (14) can be rewritten as KT = T°. Once the
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linear operator K is evaluated numerically, we can solve the linear system directly instead of using
alternating method.

Let the undetermined load T' and the given load T be approximated by N basis functions
B;(j=12,...,N).

N N

T~ T;B; and T° =) T/B; (15)
i=1 =1

We apply load B; on the cracks. Close all other cracks except the single crack on which B;

has non-zero values. Find the tractions at the locations of the n cracks of the original problem

(see? Fig. 4 ), using the analytical solution for a single crack in an infinite domain. The tractions

t;j=KB;(j=1,2,...,N)arealso approximated by these basis functions.
N
t]zZt]»,»B,- j:1,2,...,N (]6)

Once the magnitude ¢;; are evaluated, the linear system Eq. (14) leads to the following linear system

of equations for the magnitudes 7; (j = 1,2,... ).
N
ST =T i=12,...,N 7
j=1

The alternating method essentially solves the same approximated linear system with a fixed point
iteration scheme.

crack closure load unit load

(a) (b) ©

Figure 4: Evaluate the traction at the locations of cracks for each load in terms of unit basis
functions

The coefficients of the linear system remain the same in the analysis of the same cracks under
different loadings, because they depend only on the crack configuration and the basis functions.
Thus, the linear system can be solved for different loads without recomputing the coefficients of
the system. This feature is particularly useful when the constructed multiple crack solution is used
in the finite element alternating method, where it is necessary to evaluate the solution for the same
cracks under different loadings during the alternating procedure.

2Point loads (Delta functions) are used to illustrate the base functions in the figure. Only some of the loading cases
are illustrated in the figure.
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2.2 Elastoplastic analysis of multiple cracks in a finite body

Elastoplastic analysis can be carried out by the Initial Stress Method [Nayak and Zienkiewicz
(1972)], which reduces the nonlinear analysis into a series of linear analyses, for which the prin-
ciple of superposition holds. Thus, the finite element alternating method can be used to perform
these linear analyses.

The initial stress method can be described as the following. Assuming no body forces, the
virtual work principle is

/ﬂa:éVndQ:/ﬂt"v(SudF (18)

where & is the elastoplastic stress, ¢° is the prescribed surface traction, € is the domain of the body,
and I'; is the boundary with prescribed tractions.

First, the elastic prediction is found by assuming that the deformation is entirely elastic. The
elastoplastic stress o? within the body is found by using the displacements obtained in the linear
elastic analysis. But o may not satisfy the equilibrium equations. Let o be the undetermined
correction for the stress, i.e. o = o? + o°. Substituting this into Eq. (18), we find that o° satisfies

/nac;avudn=/rtt°.5udr—/napzavud9 (19)

The right hand side of the equation can be viewed as the virtual work done by the unbalanced force.
The left hand side of Eq. (19) is the virtual work done by the correction stress. The elastic estimate
of the correction stress o can be solved by the alternating method for the linear elastic analysis.
The new elastic prediction for the displacements is the sum of the old one and the correction term.
This correction procedure is repeated until the unbalanced force becomes negligible.

Since the alternating method corrects the residuals at the boundary and the initial stress
method corrects the error at in the plastic zone, we can combine them to form a single loop.
The elastoplastic analysis of the cracked structures, using initial stress method and finite element
alternating method, can be outlined as the following.

1. Solve the crack closure traction T(1) using finite element method, assuming that the material
is elastic. Denote the solution of displacement gradients as Fﬁ‘)':M.

2. Reverse the traction obtained in the previous step and apply it as the load on the crack sur-
faces. Denote the analytical solution of displacement gradient as F&yA.

3. Compute the elastoplastic stress o, due to the displacement gradient FEEM 4+ FEYA.

4. Compute the boundary load u(*), ") and the distributed load £ due to the incorrectness
of the stress ().

5. Apply the load u("), ¢ and f(!) onthe uncracked body, assuming that the material is elastic.
Repeat the procedure of finding residuals until the process converges.

The above procedure can be applied using the deformation theory of plasticity, which is
valid for a cracked structure undergoing monotonic proportional loading. For a plastic material
undergoing loading/unloading, it is only valid for the first loading step using a J, flow theory
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of plasticity, i.e. loading the unstressed body to the given level of boundary load. But similar
procedures can be applied to any loading/unloading precess: the deformation gradient in the above
procedure should be replaced by its increment for the Joading step. The stress is determined from
the previous stress state and the increment of displacement gradient. In the analysis of crack
growth, the newly created crack surfaces in general experience plastic deformation. To remove
the crack closure stress, a step of evaluating elastoplastic stress at the crack surface must be added

before the evaluation of the analytical solution for cracks in the infinite domain.
2.3 Elastic-plastic crack growth analyses
The alternating method can be used in a crack growth analysis. As shown in Fig. 5, the crack

closure traction ahead of the crack tips can be removed using the analytical solution for a crack
that has the same length as the new crack.

Before . After
the Crack Analytical the Crack
Extenstion Solution Extenstion

T ity
(Al
y e + = 2a+24a

Figure 5: Remove the tractions at the newly created crack surface

Denote the original crack length as 2a. The amount of crack extension is 2Aa. The crack
closure traction T' ahead of the crack tip for the problem with crack length 2a is evaluated from
the solution S° obtained for the crack before the crack extension. In order to create new additional
traction-free crack surfaces of additional length 2Aa, we reverse the traction T" and apply it on the
surface of the crack of length 2a + 2Aa. Boundary residuals can be computed from this analytical
solution SAN4. Then, the usual finite element alternating method can be used to remove these
boundary residuals for the crack of length 2a 4+ 2Aa. We superpose all the solutions, including 5°
and SAN4, to obtain the solution for the extended crack.

It is noted that crack closure traction is distributed only at the recently generated crack sur-
face. This traction is actually singular around the original crack tip. This type of localized and
non-smooth crack surface traction can be captured by localized special basis functions. It can not
be captured correctly by smooth basis functions, such as polynomials.

The new crack surface was in the plastic zone. Therefore, the elastoplastic crack closure
traction must be evaluated before the analytical solution is applied. The alternating procedure for
an elastoplastic crack extension step is thus outlined as the following.

1. Compute the elastoplastic crack closure traction T for the solution S° obtained for the crack
of length 2a.
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2. Reverse the traction obtained in the previous step and apply it as the load on the crack sur-
faces. Denote the analytical solution of displacement gradient as FAV4,

3. Compute the elastoplastic stress o'f;, due to the increment of displacement gradient FANA,

4. Compute the boundary load u(!), t®) and the distributed load f*) due to the incorrectness

of the stress ().

5. Apply the load u("), ¢*) and f'*) onthe uncracked body, assuming that the material is elastic.

Repeat the procedure of finding residuals until the process converges for the crack of length
2a + 2Aa.
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