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ABSTRACT

The antiplane elasticity problem for a thin cracked layer coated to an elastic half-space
under a concentrated shear force is considered. The fundamental solution is obtained
as a rapidly convergent series in terms of the complex potentials via iterations of Mdobius
transformation. The singular integral equation with a logarithmic singular kernel is derived
to model a crack problem that can be solved numerically in a straightforward manner. The
dimensionless mode-111 stress intensity factors obtained for various crack inclinations and
crack lengths are discussed in detail and provided in graphic form.
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INTRODUCTION

The problem of thin film layers coated to an elastic half-space has arisen considerable
interest in the integrated circuit’s market and composite armor protection systems. In
many cases, failure of composite layer systems may occur as a result of the presence of
preexisting imperfections in the thin film layer due to improper treating of manufacturing.
Studies of failure mechanism of thin films deposited on a substrate have been extensively
investigated by many researchers (Rice, 1983; Evans et al., 1988; Hutchinson and Suo,
1991). They applied different failure criteria to predict the behavior of interfacial crack
propagation and concluded that the pattern of failure mechanism is mainly dependent
on the sign and magnitude of residual stresses and the relative strength of the film, the
interface and the substrate. In the present study, the thin cracked layer, which is perfectly
coated to an elastic half-space, subjected to an antiplane concentrated load is considered.
The proposed method is based upon the complex potential theory and iterations of Mobius
transformation that allows us to express the solutions as a rapidly convergent series. The
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above mentioned fnethodology has a clear advantage in deriving the solution to the hetero-
geneous problem in terms of the solution to the corresponding homogeneous problem that
was termfed "heterogenization” by Honein et al. (1992a, 1992b). In order to model a crack
in the thm.layer, we introduce a continuous distribution of dislocations which leads to a
system of singular integral equations that can be solved numerically in a straightforward
ma;mer (Chen anc! Cheung, 1.990; Chao and Shen, 1995) . The mode-III stress intensi-
ty actor can be directly obtained from the resulting dislocation densities. The effect of
crack d.1m<?n51ons; geometrical configurations and material properties on the 'stress intensit

factor is discussed in detail and displayed in graphic form. e

SOLUTION OF THE ANTIPLANE PROBLEM FOR THREE-MATERIAL MEDIA

((fonSJ.der the plane-layer media with two interface boundaries L; and L, (Fig.1) where the
omains S and. S3 occupy the upper half-plane and lower half-plane, respectively and th

m}ddle layer S is an infinite strip of thickness 2h. Assume that all s{ngularities :re in the
middle layer S, the solutions in the region S; and S, respectively are now expressed as ‘

#1(2) = ¢o(z) + ardo(z) (1)
8(2) = ¢o(2) + a1¢o(A:12) (2)
with
o = (c—a)
1= T (3)
S
k2
L, -
S L g I 2h
Ly ‘
S _ =

Fig.1 Three-layer media with all singularities located in the middle layer.

yvhere th.e t.ransforr.na,tion function defined as A,z = Z+ 2ih carries the points in S; (or S )
11.1to t}?e inverse points in S (or S; ) with respect to the interface ;. From the ex;)ressions
given in (1) and (2), the continuity conditions are satisfied at the interface L; but not at
the interface L,. In order to satisfy the continuity conditions along the inte;fa.c L

construct the solution of three-material media as follows come

#1(2) = ¢o(2) + a1do(z) + c2do(A22) + cra1¢h0(A1A4,2) A (4)

¢2(Z) = ¢0(Z) + Q]¢0(A12) 4+ az¢0(z) + 020’1¢0(A12) ,z € 52 (5)
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#(z) = do(2) + a1 do(Ar12) + a200(Azz) + aza1o(A1A2z) 2z € S (6)
with
i = (C— Cz)
o G

where A,z is the transformation function defined as A,z = Z — 2ih which carries the points
in S (or S) into the inverse points in S (‘or S;) with respect to the interface L,. Now, from
the expressions in (4)-(6), the continuity conditions are satisfied at the interface L, but
not at the interface L;. In order to satisfy the continuity conditions at both the interfaces
L, and L, we repeat the previous processes by obtaining the two additional terms each
step and the series solution for each material medium is finally obtained as

b1(2) = (1 -+ ar){do2) + a2 3 (maa) Go{AaM72) + i(alaz)wo(M"z)}, 2eS5 (8

n=0

£2(2) = (1 -+ aa){dulz) + a1 3 (crea) Bl ANE) + Do (@raa)do(N"2)} .2 €S2 (9)

n=0 n=1

b(z) = ¢o(Z)+i(alag)"zbo(M"z)+i(a,ag)"qﬂo(N"z)

+o i(alaz)"%(/‘hN"z) + i(alag)"¢o(A2M"z) ,-€S (10)

n=0 n=0

with M7z = (A Ay)"z = z + 4nhi, and Nz = (A2A;)"z = z — 4nhi.

Equations (8)-(10) give the general series solutions to the antiplane three-material media
problem provided that the complex potential ¢o(2) is appropriately solved. The above
formal series is uniformly convergent on compact sets provided |aqas| < 1. The case
a; = 1 corresponds to the problem with the absence of the upper medium S, or the lower
medium S, while a; = —1 corresponds to the problem with the rigid upper medium 53
or the rigid lower medium. In all other cases lai] < 1. Even for the case of a; =1
or a; = —1, the series solution is still found to be uniformly convergent which will be
discussed in the following sections. Note that the expressions given in (8)-(10) also hold
for the corresponding problem of two circular inclusions embedded into an infinite matrix
except that A;z and A,z are replaced by

a? .
Az=——+12 ,i=1,2 (11)

zZ—2Z

with 21, 22 and a;, ap being the centers and the radii, respectively of the inclusions ( Honein
et al. 1992a, 1992b).

A THIN CRACKED LAYER BONDED TO AN ELASTIC HALF-SAPCE

In this section, we consider a thin cracked layer, which is bonded to an elastic half-space,
under an antiplane concentrated force (see Fig.2). The current problem can be treated as a
sum of the corresponding thin layer problem without cracks and a corrective problem. The
solution associated with the former problem has been obtained from the previous section
by substituting a; = 1 (or ¢; = 0) into (10) with ¢o(z) being

¢o(z) = Plog(zs — Zs) (12)
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where P and %, are the magnitude and the location, respectively of the applied point load.

The solution of the thin layer medum becomes

¢M(z,) = Pllog(zs — 2.) + 3 (——2)"log(z, + 4nhi — 3,)
n=1 ¢ + C2
. c—Coyp B - ., c—Cap ) -
+ ,,Z::l(—c i 62) log(zs— 4nht — 2,) + né;(—c - C2) log(zs — 4nhi — 2ht — Z;)
& 2(%)"“ log(zs + 4nhi + 2hi — 3,)] (13)
2
d
P
L, o
B
6 h
S T
A
10 h
Ly
Sy

Fig. 2 A thin cracked layer bonded to an elastic half-space.

On the other hand, a corrective sdution of the thin layer medium with a crack L can be
obtained in terms of a continuous distribution of dislocations as

¢(2)(Z,)

Il

P =~/ C—Cayp .
_27[/L bo(s) log(z — t)ds + ,];(ZLTZ) /Lbo(s) log(2s + dnki — £)ds

g5 = Ly ]L to(s) log(z, — 4nhi — t)ds

n=1 C+C2
—m(ﬂ)"/a(s)l (2, — dnhi — 2ih — T)d
2 P | fo og(zs nhi — 2th — t)ds
B 0o €= C n+1[ 3 5 -
y;)(——c+cz) Lbo(s) log(z, + 4nhi + 2ih — )ds] ,teL (14)

Now, a single integral equation with the unknown function bo(s) is thus established from
the traction-free condition along the crack surface as

Pz +pP(2z) =0 Lz €L (15)
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where
pM(z,) = —2RelicsM ()] 1o
P (z:) = —2Relicd”(=.)] o

In addition, the single-valued condition of the displacement when enclosing the crack must
be satisfied, i.e.

/ bo(s)ds = 0 (18)
L

Equations (15) and (18) yield to solve the constants bo(s) numerically by using the following
interpolation formulae in local coordinates s; (1<j<N) as follows

g

2d
bo(s1) = bo,o(\/—sl —1) + bos (19)
1
2d ’
bo(SN) = bO,N( 2—(1}_\,—1—\,_; = 1) + I)O,N—l (2-0)
and
bols;) = bos i 2% g S @< N =) (21)
o\ Sy 0,51 2d O,sz =1 =
2d; i

where d; (1 < j < N) are the half length of each line segment and by, (0 <5 < N) are
the unknown coefficients which can be determined numerically. Once the coefficients bo ;
are solved, the mode-111 stress intensity factors can be obtained accordingly as

1\']”(&])‘ A) = /mdiboo (22)

Kiri(tip — B) = \Jmdnbon (23)
RESULTS AND DISCUSSION

We first consider the problem of a crack in an anisotropic thin layer subjected to a concen-
trated antiplane force P at its surface (see Fig.2). The anisotropic elastic constants used
for the present calculations are csaq = 11.4Gpa, cas = 0,c55 = 10.2Gpa for Di-potassium
tartrate in the thin layer, and cqq = 22.3Gpa, css = 0, ¢s5 = 32.7Gpa for Sodium thiosulfate
in the half-space medium. In the following discussions, the center of a crack is fixed at
the origin z; = z, = 0. The calculated stress intensity factors for various crack lengths
a/h, crack orientations 6, are shown in Figs 3-4. When a concentrated load is applied sym-
metrically with respect to a straight crack parallel to the free surface, je.,d=0,0=0°
the dimensionless stress intensity factors at tip-A and tip-B are equal in magnitude but
opposite in sign. By rotating the crack angle 6 in a counterclockwise sense from 0° to 90°,
the absolute magnitude of K at tip-B begins to increase and reaches its maxium value,
and then decreases to zero at 6 = 90°. The effect of an applied load on the value K can
be illustrated by the relative angle ¢ and the distance between the crack tip of interest
and the point of an applied load. This relative angle is defined as the angle between a
line crack and a line connecting the crack tip of interest and the point of an applied load.
In general, the factor Kjj; increases as the crack tip approaches the point of an applied
load while the value Kj;; will decrease with decreasing the relative angle (. Increasing
and decreasing of the factor Kjj; at tip-B would compete depending on the relative angle
¢ and the distance between tip-B and the point of an applied load. When the point of
an applied load colinears with the line crack, i.e., ¢ = 0° or § = 90° for the given case
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d = 0, the factor K;;; would vanish as indicated in Fig.3 and Fig.4. On the other hand,
the factor at tip-A decreases monotonously since the distance between tip-A and the point
of an applied load increases and the relative angle ¢ decreases when increasing the crack
angle 6 from 0° to 90°.
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Fig.3 The mode-III stress intensity faciors at tip-A versus crack inclination
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18-4 The mode-1II stress intensity factors at tip-B versus crack inclination




