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ABSTRACT

In the case of out-of-plane loading on a thin plate under displacement constraint at a part of the
boundary, the branching problem of a crack, generated at the end of a displacement constraint,
and that of a debonding generated along the part of the displacement constraint are considered.
Using a rational-mapping and complex-stress functions, a displacement constraint is considered
in form of a clamped edge. The problem is solved for uniform bending and torsion. The
stress intensity factor of a micro-crack generated from the end of the clamped edge in an
arbitrary direction, and stress intensity of debonding along the clamped edge are calculated.
Then the strain energy release rates of a crack and a debonding generation are obtained, and the
direction of crack initiation, and whether a crack or a debonding is produced, are investigated.
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INTRODUCTION

One of factors resulting in material fracture is stress concentration at the end of a displacement
constraint. For example, in steel structure such as bridges etc., plates under out-of-plane
deformation constraint with a stiffener, rib, flange or so, have been observed to generate fatigue
cracks at these ends of displacement constraints, resulting from vibration and rolling (Fisher
1084).  In the present study, fracture resulting from the displacement constraint at a part of the
plate edge is analyzed.

As a structural model, a thin plate occupying a half plane with a clamped part of the
boundary is under out-of-plane deformation (see Fig. 1). The deflection angles of the clamped
part are zero and the part is called the clamped edge in the present paper. This problem can be
solved as a mixed-boundary-value problem consisting of the displacement boundary where two
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Fig. 1 Half-Plane with & Crack at the End of a Clamped Edge.

z-plane g-plare
Fig. 2 Half-Plane and Unit Circle before Crack Initiation

z-plane ¢-plane
Fig. 3 Half-Plane and Unit Circle aftcr Crack Initiation

components of displacement are given it a part of the boundary as a clamped edge, and the
external force boundary where two components of external force are given at the remaining
boundary. The clamped edge is not orly the typical condition of plate supporting, but also
appears in those cases of a part of a plate on which a stiffener is welded or adhered, or an
intersecting part between the plate and another plate. Then the deflection angles of x and y
directions of the part are assumed being zero.

Two failure modes at the end of the clamped edge are expected. One is initiation and
propagation of a crack into the plate and another is initiation of a debonding along the clamped
edge. The latter case is called “debonding” and is distinguished from a crack of the former case
in the present paper. It is discussed whether a crack or a debonding will occur. If a
debonding initiates first, it is also discussed whether or not a crack can branch into the plate
during the extension of debonding. In these cases, the criterion of the initiation of the crack and
the debonding is the strain energy release rate. The crack is supposed to generate or branch in
the direction with the maximum strain energy release rate.

A rational mapping function ard complex stress functions are used for the analysis.
Using the general solution, the stress intensity factor at the tip of a crack in an arbitrary direction
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i release rate of
and stress intensity of debonding are calculated. Then the values of strain energy
a crack and a debonding gencration are obtained.

GEOMETRICAL SHAPE AND MAPPING FUNCTION

i on

Fig. 2 shows a half plane with a clamped gdgg of length a at afpart l:)fi'[:i}t\ieatsitc:;allihitﬂt)zzn::gr‘ye "
the x-axis before crack initiation. Fig. 3 |nd1cat«?s the case of crac
On to the x-axis at an end of the clamped edge wn_h.the !ength a. i 5 vl Tyl L

A mapping function which maps the seml-lnﬁr.nte. region wi O i B rimarihé
anale B (0<6 < 1) to the x-axis, into the insi(.ie ofa unit cm?le shov_vn :1 ; ?n ﬂ;e i
foﬁowinn rational function obtained from the irrational function derived tro
formula Zf Schwarz-Christoffel (Hasebe and Inohara 1980):

l+i;01—i;)l_0L E, <~ _E_.p )

k u%—— = + Z :

| (.)(C) : b e d i iven by
where k is a constant relating to the length b of the crack, and is g i, i;
k=1 —i)r“/[ze“(l —Q)H)]. In addition, Eo, Ei, E, and i are complex constants, an

ich i in thi n the
the total number of fractional-expression terms which is n =24 1neth|§)/s,E;Jiiy2.e #/tl)so, Csﬁnie the
unit circle corresponding to the crack tip C is given b)f Co=(1 —.2 +1h i .bm e
rational mapping function (1) is used, the crack tip C is not a strictly skat:p come (,:rad( pabei]
small roundness.  The ratio p/h of radius p of the curvature at the cra((; r;; o & e very
has a minimum at 8=0.5, and increases gradually as 0 approache.s to do tre,ats e s il
small p/b ~ 107~ 1072 so that the crack tip is quite sharp. This stu DyE‘ e oo entgh
ondition of #/a << 1, which means that the length a of the 'bound.ary is ol
?h(;n the crack length h. Then, the accuracy of the stress intensity factortc: cue::r iy in
mapping function, increases relatively still more. While, .Iengtl;{a dg:slgcéz‘)'ppln e e
(1), it shows up as a parameter in the complex stress ﬁfnf;t.lo_ns ( asrc:es B the apecial case
mapping function which maps the shape before crack initiation, corresp
of I =0 (k=1,2,--,m)in(1).

ING
STRAIN ENERGY RELEASE RATES FOR A CRACK AND A DEBOND

i i i duced
The stress intensity factor at the tip of a crack and the stress intensity of debondllr;iir:acti:s \f{or !
from cor;;plex stress functions, and by further using these values, strain energy re
' debonding are obtained. . ' e ey~ 0
erack and\shen two o?\hogonal components of deflection angles are given as v [ox ] ga b/ E,tfy -
) etw!
along DI shown in Fig. 2 and 3, DE is called clamped edge, and junc_t;res (;fr/il;n L betweeh
the c]amped edge and the free boundary are called cl_amped ends. ' Uangnnl)e g
and uniform torsional moment 7y at infinity are considered as loadmg (Fig. 1). o loade Mo and
Using the mapping function of (1), the complex stress functions ¢(C) or lo o-
i j tions
Ta. respectively, were given by Hasebe (1984). Setting Eo=—ia, complex stress functio

e crack initiation (Fig. 2) are obtaine o ress
befor Stress components can be expressed in terms of the first derivative of complex

) . A, a0 : v at D and
function $(C) and the first derivative of the Plemelj function in ¢ (€) shows zl_:gule;nty ather: ¢
/.. the clamped ends, so that the stresses become infinitely large there. erefore,
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possibility to generate a crack into the plate from clamped ends as the starting points, or to
produce a debonding along the interface between the clamped edge and plate.

First, the case of crack initiation is considered. The stress intensity factor K = kg +iks
at the crack tip is calculated from the complex stress function (Hasebe and Inohara 1980,

Hasebe 1984). Using the stress intensity factor K(=kz+iks), the strain energy release rate
Geract 18 given as follows:

K
DO+ V) 2
Next the case of a debonding from climped end DD along clamped edge DE is considered.
Corresponding to stress intensity factor & at the crack tip, the stress intensity factor at the tip of
a debonding is called stress intensity of debonding in the present paper, and expressed by dg,
which is given at {=a (see Appendix).

When both M, and T, apply, the stress intensity of debonding is obtained as follows:
(1-2)a" o
e 2

V2
Then, using 1-A =4, a*=d"" and (3), the strain energy release rate (g of
generating a debonding is obtained finally as the following strict expression :

K - = xa 2 M,
G = Ayl = {mz+ Inx } (—0) +T?
T el 2])(1 - v)z 0% =D ( ) e 0 (4)

et =

8o = {(1+ V)T —iM, )

DEBONDING AND CRACK INITTATION

Using the strain energy release rates Geraer and Gae, the direction of the crack initiation
from the clamped end, and the branchingproblem of a crack during the extension of a debonding
are investigated.

When the crack length & becomes zero, i.e. b—0, the strain energy release rate is
defined as the strain energy release rate for the crack initiation.  Strain energy release rate at
generating a micro-crack is derived from the stress intensity factor of the micro-crack.
However, the stress components near the clamped end after crack initiation have a singularity
determined by the angle (1 —6)m between the clamped edge and the crack, but the stress
components at the crack tip have the order of the power of —0.5 for the distance from the crack
tip. Thus being affected by each different singularity of the clamped end and the crack tip, the
stress intensity factor for h—0 does not converge to a constant value (Hasebe 1984).
Therefore, to obtain the strain energy release rate for the crack initiation, the stress intensity
factors of two crack lengths are used, i.e b/a=0.001 and b/a = 0.0005 which are small.

Stress intensity factors K are non-dimensionalized in the following equations with suffix
(M) and (T) which show cases of bending moment M, and torsional moment 7, respectively:

F;\“H'FSN) _ 3+v. k;\n +ik§-“4>; F;r’ +iFSm :iﬂ. kg) +ik§r) _
1+v  MJa 1+v  Ta :

The stress intensity factor for both M, and 7 is expressed by kg = kB(‘“) + kB(T) and

ke = /(S(“) + kgm by superposition.  Therefore, using (2) and (5), the strain energy release rate
for the crack initiation from the clamped end is obtained as follows:
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Fig. 4 Nondimensional Strain Energy Release Rates
Geraer and Gy, and Crack Angle 6n with Clamped
Edge for b/a=0.001, 0.0005 and v=0.25
Ka . 2 2
G oo = ———— (M FED + TFST) H M FEM + D }
erack 1)(3+ v)g {( ol'B ol'B ) ( ol's ol's ) (6)
The value of G, can be calculated by substituting values F and /5 into (6) and

changing angle O for a crack initiation. The angle O to give the maximum value of G« and
maximum value of G.,..x are shown as well as for G, expressed by (4) in Fig. 4 for v=0.25.
Solid and broken lines show cases of b/a = 0.001 and b/a = 0.0005, respectively. ~The left-hand

side of vertical axis (G shows non-dimensional Gz, or G,qq (for example, DG(,C,,/[GZ]Z] s

I)(IC,A‘,M/[GTOZ] etc.) for each ratio of loading, and D is the flexural rigidity. The loading ratio

M, /T, or Ty /M, of the horizontal axis corresponds to the range from 0 to £ for both M and
7). Direction angle 0 for the crack initiation, shown in the right-hand side of vertical axis,
varies in the range from 127° to 160° by changing M, and 7o.  There is a little difference of 61t
depending on b/a. There is not so large difference of Geraer depending on b/a.  However, in
the range of |Mo|>|7;|, the value of Gere for b/a=0.0005 is larger than that of »/a=0.001,

while in the range of |A,| <|7;| there is the inverse state.

Now, the conditions of generating a debonding and a crack are investigated. ~Fracture
toughness values of generating a debonding and a crack, expressed by strain energy release rates,
are defined as (Gup ), and (Geraet ) » TeSPectively. Four cases of fracture phenomena

produced by relative magnitude between G and (Gde,,)CR, and by that between Geracr and
(o )('/e are considered as follows:
cx A4 Go <(Geper ) MO debonding and no crack

generate. When the value of (Gdeh)m is larger than that of G determined by given

(i) In the case of G, <(GM)

loading shown in Fig. 4, and the value of (Gmck)CR is also larger than that of Gerac,

neither fracture produce.
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Next, a debonding generates first and on the way of the debonding extension, the
possibility of a crack initiation is investigated. When length “a” of the clamped edge decreases
by the extension of the debonding, it is noticed that both Ges and Grack decrease in proportion to
length @ from (4) and (6).  Therefore, the debonding is stopped at the time of G, < (Gaes)cr

by decreasing Gas.  With regard to the possibility of a crack initiation at this time, in the case of
(i), no crack generates since Goract also decreases by decreasing a. Namely, there is no change
from case (ii) to (iii). Moreover in the case of (iv), C value has no influence on a, as shown by
(7). so that the relation of C>C, is always satisfied, and then Geracx becomes smaller than

(Geraet )z before Gues becomes smaller than (Gg)o,- Therefore, after the debonding

generates, it extends or stops on the way, but branching to a crack should never occur. The
behavior of the crack after it has been generated is out of this study, so that it is not stated here.

CONCLUSIONS

As regarding the problem of a clamped edge, the stress intensity of debonding is given
as the strict expression by (3). Also using the stress intensity factor or the stress intensity of
debonding, the strain energy release rate to generate a crack or a debonding is given by (2) or (4)
(Fig. 4). Supposing the criterion of a crack generated at an angle with the maximum strain
energy release rate, in the case of a clamped edge, this angle is varied in the range of
o= 127° ~160°due to the loading condition. By comparing the strain energy release rate
with the fracture toughness value, it was investigated whether a crack or a debonding generate.
In order that neither debonding or crack generate, (Gues)cr and (Gerack)cr Of the material must be
chosen larger than Gaes and Gerae shown in Fig.4, respectively. In addition, when there is
possibility to generate a crack and a debonding simultaneously, the fracture phenomenon was
investigated by considering the magnitude between the ratio of strain energy release rates and the
ratio of fracture toughness values.  After a debonding generates, there are two possibilities that
the debonding stops or not, according to conditions of the loading, but there is no possibility for
a crack to generate during the extension of the debonding.

As a criterion of generating a crack and a debonding, the strain energy release rate
criterion was used. In case that the materials disobey this criterion, an investigation similar to
this study can be performed with a criterion that is appropriate to the materials instead of that of
the strain energy release rate.

APPENDIX  STRESS INTENSITY OF DEBONDING

The coordinates of points D and E in the physical plane, corresponding to points o and
B on the unit circle shown in Fig. 2, are defined here as z =z4 (point D) and z = z (point E), s0
that complex stress function d)’(z) in the physical plane is generally expressed, when (z —z.4) is
infinitesimal, i.e. z is a point near z,, as follows:
a, exp(nd) e
d()=—F——7772-2 .
() 2ﬁD(l+v)( ) (A1-1)

where the coefficient exp(nd) / [2s/5D(1+\-’)] has been taken for stress intensity factor K to

agree with &, of stress intensity of debonding in the case of a crack in homogenous material.
Therefore, the definitions of K and &, become equal at the tip of a crack and a debonding.
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In this case, points z =z, and zz of the displacement constraint are mapped into {=a
and B, respectively. Then, ¢’(C) is expressed as follows:
00)=(C-a)"(C-B) " 2(0)~ £(©) (A1-2)
Since CD’(:) = cb’(C)/o)’(C), and considering the limit z—z,, d, is expressed by the
following expression derived from (Al-1) and (A1-2):
&, = 24/2D(1 + v)exp(- nd)- lim (z— z,) ®'(2)

= 2V2D(1+ v)exp(- 8)- m{m@g:z(‘*)} - s)’ZC‘)g(C)

=2J2D(1+ v)exp(- ng)%

where g(a)= lgim[d)'(C)(C - a)" - B)H], 6, is an angle of the debonding surface to the x-axis,

-exp{iK(BA 7 +%)} (A1-3)

and y shows Zaof} of the central angle between a and 8 on a unit circle (see Fig. 2 in this case,
6, =m and y=m) (Hasebe et al. 19388).

d, expressed by (A1-3) is acoefficient to show the strength of singularity at the tip of
debonding, which is called stress intensity of debonding. Moreover, d, is a complex constant,
and expressed as O = Ag +idg. Siresses near the tip of debonding, on the interface of the
debonding, are expressed by the use of @, as follows (Hasebe and Salama 1994):

M, = —\/Z_I—(IH—Vj {(1-v)coshnd-2(1+ v)sinhnd i, |cos(6, +81nr);

—(3 + v) -

M =——"2_coshndla,|lcosb, +dInr);

= Parie vy Olleosbo +810r)

1 -
M, = —=———{(1+ v)coshmd-2sinh td}|ct,|sin(B, + S Inr =
! @(Hv) {( ) }| 0| ( 0 ) (Al-4a, b, ¢)

where r is the distance from the tip of debonding, and 6, is the argument of a, given by
6, = tan"'(45/Ay). Therefore, it isrecognized that |&,| can be used as the index of the stress
intensity of debonding. As shown by (4), use of [&OI as the index is the same as that of the

strain energy release rate to evaluate the strength of the debonding.
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