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ABSTRACT

The wide applicability of asymptotics and singular perturbations in fracture is illustrated by
reference to three examples: small scale yielding and its extensions which show the influence
of constraint, crack bridging of a brittle matrix reinforced by fibres in the long crack limit,
and the three-dimensional dynamic perturbation of a propagating crack. Possibilities for
further research are indicated.
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1. INTRODUCTION

Asymptotic theory abounds throughout analytical or computational studies of fracture.
Sometimes it is explicit; very frequently, it is implicit, in that the model being analyzed
has some asymptotic validity. Almost invariably, for example, stress analysis is performed
under the assumption that the material is homogeneous, and a decision on whether a crack
will extend will be based upon examination of features of the calculated stresses and strains.
The actual material, however, is heterogeneous, and can only be regarded as homogeneous
in first approximation, valid when the calculated fields vary only slowly. Even then, the
stress that is calculated is a ‘homogenized’ stress, upon which will be superimposed possibly
large fluctuations, varying on the scale of the microstructure. Also, even if this feature
is disregarded, there is usually a ‘fracture process zone’ adjacent to the crack edge, in
which local events (void formation, microcracking, etc.) will invalidate the constitutive
description of the material that is employed in the stress analysis. Understanding the
fracture behaviour — with the probable intention of improving performance by material
selection or design — requires recognition and analysis of events in the process zone, and
their interaction with the ‘macroscopic’ field.

Three examples are selected, for illustration. The first relates to the ‘small-scale yielding’
approximation which underlies linear elastic fracture mechanics, and various generaliza-
tions. The need to analyze ‘inner’ problems, focussing attention on the detail of events
near the crack edge, is emphasised, if the fracture process and its sensitivity to scale is to
be understood. A significant amount of analysis is already available for two-dimensional
problems — at least sufficient to demonstrate the methodology. Real cracks exist in three
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dimensions, however, and the two-dimensional approximation itself is only valid asymptot-
ically, for large radius of curvature of the crack edge. Three-dimensional analysis is needed,
and almost none has yet been performed. Some of the features that it is bound to display
are discussed.

The next example relates to brittle material, reinforced by aligned fibres. The matrix
material may crack, and separation of the crack faces may be restrained by intact fibres.
This is the phenomenon of crack bridging. It is usually modelled by applying to the crack
faces a continuous distribution of cohesive traction (itself an asymptotic representation
of the influence of the discrete fibres), which depends upon the relative separation of the
crack faces. This model leads to a description involving an integral equation whose kernel
is hypersingular. In general, it can be — and needs to be — solved numerically. One
interesting case, however, occurs when the crack is long, and yet remains bridged over all
(or most of) its length. This ‘long crack’ limit poses an interesting mathematical challenge:
singular perturbation of hypersingular integral equations, for which a new twist on existing
asymptotic technique had to be developed. The new technique is applicable more generally
and has expanded the range of mathematical problems susceptible to singular perturbation
treatment.

Finally, a recent example relating to the dynamic perturbation of a crack propagating in
a linearly elastic medium is discussed. The solution will facilitate a full three-dimensional
dynamic stability study. The underlying reasoning relies on notions of matched asymptotic
expansions but the manner of implementation is novel and distinctive. The solution has
already demonstrated how pulse markings on a fracture surface, called Wallner lines, may
form. Further possible applications, and generalizations, are indicated.

2. SMALL-SCALE YIELDING AND GENERALIZATIONS

Linear elastic fracture mechanics requires the calculation of stresses within a body, under
the assumption that the material is linearly elastic. This is a good approximation, if the
body in fact is elastoplastic, subject to two provisos. The first is that the loading that is
applied should be sufficiently low; that is, if the stress remote from the crack tip is of the
order of o#, and the yield stress is characterized by a stress g, then € := ot /oo < 1. The
other proviso is that the calculated stresses should not be taken literally near the crack
tip. They are square-root singular, so that, for example, for Mode I loading conditions,

oij ~ Krfi;(0)/V2rr as v — 0, (2.1)

where the crack is situated on the plane z, = 0, and 7,0 are polar coordinates with origin
at a crack edge. Evidently, therefere, the calculated stresses violate the yield condition
within a distance of order d := (Ij/00)* from the crack edge, and ‘small-scale vielding’
prevails so long as this distance is much smaller than macroscopic dimensions of the body,
characterized by a length L. This condition is bound to be satisfied when ¢ is small
enough. As discussed by Rice (1963), the problem as described admits a ‘boundary layer’
formulation. The linear elastic fieldis a good approximation, except within some radius R
of the crack edge. For sufficiently small €, the order relations d < R < L will apply. In
that case, relative to the length scale d, the crack appears to be semi-infinite, in an infinite
body, subject to remote loading given by (2.1) as r/d — oo. Evidently, whatever occurs
near the crack edge is governed by the value of K in this situation, and the macroscopic
fracture criterion is bound to be “ip = K7, where K. is the fracture toughness. This
sort of reasoning applies, even for other models of material behaviour near the crack edge,

Asymptotic Analysis in Fracture 1851

including the possibility of damage growth. However, any attempt to explain or predict
the observed value of K. requires an analysis of the ‘inner’ boundary value problem, close
to the crack edge. One of its interests is that it is universal, and describes the near-tip
response of a crack to any loading, in any body, subject to the restriction to small-scale
yielding.

The elementary boundary-layer theory, as described, delivers just the first terms in asymp-
totic series, which may be developed, formally, in powers of €. The linear elastic stress
field is the leading-order term in the outer series, proportional to oge since it is linear in
the applied loads. The boundary-layer solution can be expressed as oo times a function
of r/d and 0, independent of €. Following terms in the series yield corrections, and so
extend the range of values of ¢ for which the solution is a good approximation. This was
done, for elastoplastic material behaviour, by Edmunds and Willis (1976a,b; 1977). The
mathematical procedure was to use the formalism of matched asymptotic expansions (Van
Dyke, 1964). Qualitatively, the reasoning is as follows.

First, assume that the ‘inner’ problem has been solved (except in special cases, this requires
a finite-element computation). Now revert to the ‘macroscopic’ scale, with r ~ R. In the
limit as € — 0, the domain of the inner solution shrinks to a small neighbourhood of the
crack tip. Outside of this neighbourhood, it has the effect of a force dipole, concentrated
at the crack tip. Although, very close to the crack tip, the field becomes the inner field, the
formal limit of the dipole field as » — 0 has a singularity of order r—3/2. Because boundary
conditions on the crack faces are satisfied, this field is one of the eigenfunctions given by
Williams (1957). The singularity is too strong to be physical, but this is of no consequence
because the inner field takes over close to the crack tip. The strength of the singularity has
to be, on dimensional grounds, proportional to 0od3/? = 0o(K1/00)%, which is proportional
to €3. This ‘Williams eigenfunction’ violates boundary conditions at the specimen surface,
and so induces a correction to the linear elastic stress field which is of order €. This, in
turn, induces a correction of order €3 to Ky, whose leading term is of order e.

Next, a correction to the inner solution can be considered. To the next order in accuracy,
as 7 — 0, the stress field has the form given in (2.1), plus a term T8;16;; — the so-called
T-stress. It induces a correction of order ¢ to the boundary-layer solution because 1" o< oo¢,
and the factor € does not scale out as it did in the case of the K-term.

Iteration to higher order is now possible: the correction to the boundary layer solution
induces a correction of order higher than ¢2r=/2 in the outer field, which reflects back to
give a further correction to the inner field. The entire process was pursued systematically
in the papers of Edmunds and Willis. A detailed account would be out of place here. It is
appropriate, however, to indicate some deductions that follow from the analysis.

The asymptotic analysis provides expressions in the form of series in powers of € for features
of the stress and deformation fields away from the crack tip, and in its vicinity. One
interesting question is to comprehend what happens when the assumptions underlying
LEFM do not apply. It is also possible that the plastic region may be too small for a
region of ‘J-dominance’ to have physical significance. Such considerations require detailed
study of the field close to the crack tip, in conjunction with explicit local fracture criteria.

The most general way to study near-tip features is probably to construct a complete finite-
element model for the component or specimen, containing enough detail to allow the rep-
resentation of near-tip events. The main point, though. is to establish trends and so
contribute towards the development of criteria for analysis or design. One possible ap-
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proach is to employ low-order asymptotic expansions. The simplest of these is provided by
boundary-layer analysis as described above, but with the ‘inner’ problem solved to second
order, by applying the boundary condition

0:(r,0) ~ K1 fi;(0)/V2rr + T;j as r — oo, (2.2)

where the constant term T}; depends upon the component or specimen in question. The
accuracy of this approximation, in comparison with full finite-element computations, has
been discussed by Bilby et al. (1986), and Betegén and Hancock (1991), under the as-
sumption of plane strain so that only the component T; = T was relevant. It was first
considered in conjunction with local fracture criteria by Harlin and Willis (1989). They
postulated that fracture would occur either when a critical stress condition was reached
(Ritchie, Knott and Rice, 1973) or when a criterion for ductile fracture by void growth
was satisfied (Rice and Johnson, 1970), the actual mechanism of fracture depending on
which criterion was reached first as loading increased. If the former, the fracture would
be brittle, while if the latter, the failure would be ductile. The novelty of the Harlin—
Willis analysis was the observation that, since these criteria involved a microscopic length
scale, it could be that the response of one specimen might be ductile, while the response
of a geometrically-similar specimer of different dimensions might be brittle. Furthermore,
because the competition between the two mechanisms is yield-stress and therefore tem-
perature dependent, the ductile/brittle transition temperature should be scale-dependent.
Harlin and Willis demonstrated this by full finite-element computations and corresponding
‘modified boundary layer’ calculations. The trends predicted for the variation of transition
temperature with absolute size were the same, even quantitatively for the range of con-
figurations investigated. The variations of transition temperature with size, as well as the
absolute level of fracture resistance, varied with the specimen configuration and were thus
demonstrated to correlate with the value of the T-stress. In words, the T-stress serves as an
indicator of the degree of constraint and so, equally, the ductile/brittle transition depends
on constraint. It is not implied that the T-stress provides an accurate characterization un-
der large-scale yielding (for which 0’Dowd and Shih (1991) advocate the use of a modified
near-tip field, augmenting J by a non-singular stress Q). The easily-calculated T-stress
does offer, however, a simple mearns of ranking specimens with respect to their sensitivity
to scale. (It is remarked, too, that the Harlin-Willis analysis suggested the possibility that
a surface-breaking crack of depth lcm in a typical pressure vessel steel might display a
transition temperature perhaps 40'K higher than a crack of depth 2cm. Naturally such an
indication has to be checked experimentally.)

It seems to the writer that a three-dimensional boundary layer theory ought to be devel-
oped. In part, this is simply because real cracks are three-dimensional. A further legitimate
observation is that full three-dimernsional computations are at least inconvenient, and likely
to remain so, and therefore some simple parametrization of constraint in three dimensions
should be useful. The simplest boundary-layer calculation in this class would be to ad-
dress the modified small-scale yielding boundary layer, in the context of ‘generalized plane
strain’, allowing for the remote boundary condition (2.2), with

T = Td:1d;1 4 S6i36;3. (2.3)

The ‘S-stress’ corresponds to tension along the edge of the crack. It seems evident that,
for example, a positive value for S could work against a negative value for T', and seriously
compromise predictions based on the assumption of plane strain. More complete boundary-
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layer analysis definitely is feasible, because the elastic Green’s function for a semi-infinite
crack is available, essentially from the work of Bueckner (1987).

3. CRACK BRIDGING

A brittle matrix reinforced by stronger fibres (which may or may not be subject to plastic
yielding) may display the phenomenon that the matrix cracks, leaving the crack faces
restrained by fibres that have remained intact. This is the phenomenon of crack bridging.
It is commonly modelled by regarding the crack as being present in an elastic matrix, whose
elastic moduli are those of intact composite, with the crack faces subject to cohesive forces
whose magnitude depends on the crack face separation. Calling the relative separation ¢,
and the cohesive force v per unit area, a conventional linear elastic formulation shows that
¢ must satisfy the hypersingular integral equation

a2 _gr 4 y(6(2)) = o(z), —a<z<a (3.1)

—a(y—x)?
Here, either plane stress or plane strain conditions are assumed, the crack occupies the
segment (—a,a) of the z;-axis, A is the appropriate combination of elastic constants and
o(z) is the 22 component of stress that would prevail at the location of the crack, if the crack
were not present. The integral is interpreted as a Hadamard finite part or, equivalently, in
the sense of generalized functions. More detailed discussion of this equation is provided by
Nemat-Nasser and Hori (1987). Dimensionless variables are introduced by measuring , y
in units of @, and ¢ in multiples of some microscopic length scale é. Stress can be measured
relative to some unit oo representative of the cohesive stress. Equation (3.1) then becomes

_6/_11 (?Jﬁ%;dy +9(¢(z)) =o(z), -1 <<, (3.2)

where

e = Ad/(oopa). (3-3)
The ‘long crack’ limit is that for which @ > Ad/0o0, so that ¢ — 0. This poses a singular
perturbation problem because, in first approximation, setting ¢ = 0 reduces (3.2) to the
algebraic form ‘

+(4(2) = o(x). (3.4)
This has unique solution

#(z) = do(2) := v~ (a(2)), (3:5)

if 4 is an increasing function and max{o(z)} < max{y}. This solution cannot be vali'd
near the crack edges z = %1, because it is a physical requirement that ¢ = 0 there. It is
therefore valid only at points on the crack away from the ends, and so represents the first
term in an ‘outer’ expansion. An equation valid in an ‘inner’ region adjacent to the crack
tip at @ = —1, say, can be constructed by scaling the variables, so that

X=(z+1)]e, Y =(y+1)/e (3.6)

Then, equation (3.2) becomes

Ye Y) e = o : ; 5
—/0 iy +AH{HX)) = o(=1+€eX), 0< X <2/e, 3.7
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where ¢(X) = ¢(—1+ ¢X). Taking the limit of this equation, as € = 0 with X fixed, gives
the following equation for ¢o, the lowest-order approximation to ¢:

o go(Y) i -
- ————=dY X)) =o(-1), 0 <X < oo. 3.8
L gy +adlX)) = o(-1), 0< X <o (3.8)
It can be verified that, as X — oo, theintegral in (3.8) becomes insignificant, so that do ~
¢o(—1), which is exactly the limiting value of ¢(z), calculated from the outer approximation
(3.4). Furthermore, an approximation which interpolates smoothly between the inner and
outer approximations is

d(x) ~ ¢o(z) + {Bol(z +1)/e] = do(—=1)} + - (3.9)
where - - - represents a corresponding contribution from the vicinity of = = 1.

This solution permits the calculation, to lowest order, of the stress intensity factors at
the crack edges, and also of the relative separation of the crack faces. The problem occurs
when an attempt is made to develop further terms. Reverting to the full equation, an outer
expansion correct to order e requires the integral to be estimated to order €°. Superficially,
this can be done by substituting into the integrand the lowest-order outer approximation
¢o(z). The integral then has a singularity of order (z + 1)~! near the crack end * = —1.
This is of no consequence, because a boundary layer solution takes over there, in any case.
The next problem is to find a two-term inner expansion. Two hints of trouble appear. One
is that the singularity in the second term of the outer expansion is not integrable. Also,
anticipating that the two-term inner expansion should agree, as X — oo, with the limit, as
2 — —1, of the two-term expansion of the outer solution suggests that the inner solution
will contain, in its asymptotic form as X — oo, the expression ¢o(—1) + eXdyp(—1). This
is linear in X and further complicates the treatment of the integral in (3.7) in the limit
¢ —» 0. The resolution of these difficulties is conceptually very simple, though delicate in
its implementation. At any stage, a wniform approzimation to whatever order is required
should be used for the integrand. For this purpose, the asymptotic matching principle of
Van Dyke (1964) is invoked. To describe this, it is necessary to introduce notation. Denote
the exact solution ¢(z, €), and let its asymptotic expansion to m terms (in the present case,
this means up to order €™, counting Ine as 0(1)), as € = 0 keeping = fixed, by On(¢).
Similarly, denote the asymptotic expansion to n terms as ¢ — 0 of ¢(—1 + €X,¢€), keeping
X fixed, by I,(¢). The matching principle proposes that

Orilla(#)] = Ia[Om(d)]; (3.10)
it proposes further that the expression
d(z,€) ~ Onl9) + In(¢) = OnlIn(d)] + -+ (3.11)

provides a uniform approximation to ¢(z, ¢), correct to O(e™) in the present case. The dots
indicate similar terms, involving the inner expansion near the other end of the crack. The
approximation (3.9) fits this pattern, with n = 0.

An integral first has to be treated in considering the lowest-order inner problem. This
requires the integral in (3.7) to be estimated correct to order €°, and this can be achieved
by replacing ¢ by its uniform approximation corresponding to (3.9), in which, so far, ¢o
should be regarded as unknown. Elementary analysis then confirms that, to order €, the
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integral takes the form given in (3.8), as already asserted. Equally, the first-order outer
approximation requires the evaluation of the integral in (3.2) correct to order €. This again
can be accomplished by replacing ¢ by its uniform approximation (3.9), and elementary
analysis confirms the simple form already given. To proceed further, knowledge of ¢ to
order € means that O;(¢) is known, and hence that 0:1[11(¢)] = [1{01(¢)] can be determined
to give, using (3.11) with n = 1, a uniform approximation valid to first order which can be
employed to derive an equation which determines the inner expansion of &, to first order.
After some analysis, the result is that

&“’(27)0‘1'&71, (3.12)

where ¢, satisfies the equation
o dY 2 oon 5 , 2 \
T B Y S -DI X (Bo(X)) = X (D el ) e (=)+ec.
(3.13)

with

1od
0 = [, Elety) = du(=1) =+ 1o =D) — pul ) = (=) (31

Further terms can be calculated. The method applies generally, and is applicable to other
equations. Willis and Nemat-Nasser (1990) proposed the method and demonstrated it for
the linear case y(#) = k¢. Nonlinear examples have also been worked out, including admit-
ting the possibility of fibre breakage or pullout (see Movchan and Willis 1993, Movchan and
Willis 1996a). The method has also been applied to the bridging of a circular crack, which
satisfies an integral equation with a kernel more complicated than that in (3.2) (Movchan
and Willis, 1996b).

The modelling leading to the equation (3.2) has some limitations, of which perhaps the
most important is that the ‘cohesive law’ v() is applicable only where ¢ varies slowly
relative to fibre separation. Better modelling, allowing for more rapid variation (which is
bound to occur near a crack tip), is in progress.

4. DYNAMIC PERTURBATION OF A PROPAGATING CRACK

A crack propagates dynamically so that, at time ¢, it occupies the domain
S={-0o<z =Vi< €p(zq,t), —00 < T2 < 00, Tz = e (1, 22)}, (4.1)

where ¢ < 1. This represents a general dynamic perturbation of a plane crack in uniform
motion defined by the surface So, realised when ¢ = 0. Maintenance of such a uniform
motion would require loading to be independent of , and to depend on (z,t) only in the
combination X = x; — Vt. This special loading vields no simplification in the analysis,
so the boundary value problem may just as well be solved for general loading. The basic
objective is to solve the boundary value problem asymptotically, to first order in ¢, and
then to impose a fracture criterion, which restricts the functions ¢ and . Rice, Ben-Zion
and Kim (1994) solved a problem of this type, but for the scalar wave equation, and with
¢ = 0, so that the crack remained in the plane z3 = 0. In particular, they calculated
the stress intensity factor in terms of the function ¢, and then invoked a fracture criterion
in which the local toughness was specified as a function of (z;,x2) to derive an integral
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equation for ¢. The full elastodynamic problem is technically much more difficult but it
has been solved (Willis and Movchan 1995, Movchan and Willis 1995, Willis and Movchan
1996).

The technique devised by Willis and Movchan made use of an integral identity. Take d > €
but still small, and take u to be the additional displacement generated by introducing a
crack over S., into an infinite domain in which the displacement and stress fields in the
absence of the crack would have components u', of. The displacement field u is therefore
allowed to jump across the surface S,, while stresses are continuous except possibly at Ses
and satisfy the boundary conditions

oi;n; + 0377,]' -0 (4,2)

as x — S, from cither side, n being the normal (with nz > 0) to S.. Denote by u(d) the
displacement u evaluated on z3 = ¢, and let o(d) be the corresponding traction vector,
with components o;3(d). These are related by the identity

w(d) = -G *o(d), (4.3)

where G(z1, 2, ) represents the Green’s tensor for surface loading of the half-space z3 > d
evaluated on the surface x5 = d, and * represents the operation of convolution with respect
to (21, 22,t). It follows also, by considering the half-space z3 < —d, that

u(—d) = GT x o(—d). (4.4)

Now associate with the unperturbed configuration displacement and stress vector fields U
and X. Their values on 3 = 4d are similarly related as in (4.3) and (4.4). Next, note that

UT(—d) + o(d) = 57 (—d) * G * 0(d) = —ET(—d) x u(d). (4.5)
A similar identity applies with d replaced by —d. Subtracting the two gives
—~(U)T # (o) + [U]] % (0)a = ()7 * [u]a = [B]] * (u)a, (4.6)

where

(Na = f(d)+ f(=d), [fla=f(d) = f(=d). (4.7)
Finally, by writing side-by-side three linearly independent solution pairs U, X, these may
be regarded as 3 x 3 matrices in the fundamental identity (4.6) which applies for all € and
d, subject only to the restriction d > e. Willis and Movchan exploited the identity (4.6)
by choosing U to be a weight function matriz for the unperturbed moving crack. This
satisfies the equations of motion except on the plane x3 = 0, X is continuous across x3 = 0,
U is allowed to be discontinuous across 3 = 0 when X = 2, — V¢ > 0,and ¥ =0 when
23 — +0 and X > 0. The field Uis not identically zero because it is chosen to have an
‘unphysical’ singular behaviour as X — 0 with 3 = 0. Specifically,

1/2 .
U]~ () HEXOS@)S0L as X =0, (4.8)

P
Here, [.] denotes the limit as d — 0 of the corresponding quantity with subscript d. Similar
notation will be deployed below for (.). These conditions suffice to define U and = uniquely.
Of course, finding them is a task of substance. It follows from symmetry that Mode I (for
which only [Uss] # 0) uncouples from Modes IT and 1II which, unlike the case of two
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dimensions, remain coupled. The Mode I problem can be reduced to a scalar Wiener—Hopf
problem for [Uss] and is soluble by standard means (Willis and Movchan, 1995). By good
fortune, the matrix Wiener-Hopf problem for the the coupled Modes II and III is also
soluble (Movchan and Willis, 1995): this is one of very few examples of an explicit solution
to such a problem.

The use of the identity (4.6) may be illustrated by applying it to the unperturbed crack.
Then, € = 0 and it is possible to let d — 0 immediately. Now set

oc=0,+0_, (4.9)

where o, = 0 for all X <0 (so that oy = o H(X)), and split other functions similarly. It
should be noted that the given boundary conditions imply that

() = (), [E]=0, [U]=[Uly, and [u] =[u]-, [o]=][o]-. (4.10)
The identity (4.6), with d = 0, now takes the form
[UIT + {0}y = —[U]] = (@) + (U)T #[o)- + ()T [u]_. (4.11)

The functions (o)_, [o]- are known, from the given boundary conditions!. The function
(o) is not known, but it has the asymptotic form

(0)y ~ Kz, t)H(X)/V2rX as X =0, (4.12)

where the stress intensity vector K has components (K11, Kprr, Kp). Tt is unknown, but it
can be found by applying (4.11) as X — +0. For any X > 0, the convolution of the two
_ functions is zero, identically. Also, as X — 0, the convolution of the two ‘+’ functions
can be evaluated from their asymptotic forms (4.8), (4.12), giving

U+ (o) ~ K. (4.13)

Thus, (4.11) gives )
K = —[U]] * (o)~ + (U)" *[o]-, (4.14)

in which the convolutions are evaluated for X = 0.

The perturbations of the stress intensity factors in the case of the perturbed crack also
follow, by exploiting the fact that (4.6) is an identity in ¢, d and X. Their evaluation
requires expansion of the identity to lowest order in d and to first order in ¢; it is also
necessary to expand the unperturbed field, and the weight function, to two non-trivial
terms in X.

The techniques required to complete the solution include Fourier transforms, complex
variable theory, matched expansions and generalized functions. The final result of the
perturbation theory is to represent the stress intensity factor in the form K = KO 4+ AK,
with the perturbation given by

AK = {QT * (¢l — p"@)K) — (Ep2 + Q)K©®

+ (g)m (6A© 1y L)} + {[U]T « (PU) — ()T« [PO]} . (4.15)

11 fact, for the conditions given, [o]_ = 0, but the formula also applies more generally, when the upper
and lower crack faces are loaded differently.
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The terms in (4.15) are defined in full in Willis and Movchan (1996). The function Q is
obtained from the asymptotic expansion of [U] as X — 0. The unperturbed stress field
ahead of the crack has the form

o~ K©/VirX — PO 4 AOVX, (4.16)

¥ (x2,t) = (0, z2,t) and P () defines the perturbation of the boundary condition, obtained
by formal expansion of (4.2). The matrix L depends on A© K© and ng), and 2 depends
on 1 ; and ®¥; the other matrices are constants.

The solution has recently been exploited, in the special case of Mode I loading with the
crack confined to the plane z3 = 0, to explain the presence of Wallner lines on a crack
surface?. The full solution will facilitate a variety of studies of crack perturbation, and
crack stability; these will require additional information in the form of fracture criteria,
and perhaps also further asymptotic analysis.
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