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ABSTRACT

The Griffith energy approach is applied to study two types of dispersed fracture: conventional,
gradual damage and abrupt damage. Gradual damage under uniaxial straining and abrupt
damage of a stretched rod are considered to illustrate the effects described by the models.
Besides the model of abrupt damage is applied to study energetics of a fast moving longitudinal
shear crack.
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INTRODUCTION

Griffith in his classical paper (1920) firstly applied the energy approach to investigation of
strength of materials. Instead of the conventional theories of strength connecting exhausting of
material resistance to failure with reaching a threshold stress or strain state the concept of
fracture as the energy consuming process was developed. The energy equation allowing for the
energy required for fracture was explicitly used. The specific fracture energy or the surface
energy was introduced as a material property which determines crack resistance. Besides in
opposite to the theories of strength which consider intact materials, the defects were explicitly
introduced whose evolution leads to failure. In the Griffith theory defects are implemented as
cracks. As a result the theory predicts a critical load for a given size of the crack or vice versa a
critical size of the defect which can be sustained under the given load. The theory of fracture
essentially enriched the material sciences. The clear, evident from the physical point of view
Griffith’s idea that fracture is the energy consuming process appeared to be fruitful in many
other problems where fracture is induced by defects different from a single crack. In the present
paper the energy approach will be applied to study two types of dispersed fracture under action
of stress and/or temperature, namely, gradual damage and abrupt damage. The former is
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conventional damage characterised by progressive fracture of the internal structure with growth
of stress. The latter is similar to a phase transformation and is characterised by step-like change
of mechanical properties of a solid upon reaching the threshold stress state.

ENERGY THEORY OF DAMAGE

The theories of damage or dispersed fracture describe processes of conception and evolution of
material microdefects such as microcracks, pores, voids, inclusions and so on. The traditional
theories of damage taking their origin from the pioneering papers (Kachanov, 1958; Rabotnov,
1959: I"ushin, 1967) give continuum description of dispersed fracture in solids. The state of a
material particle is characterised by the strain tensor. The response of a material particle to
history of its state is determined by the stress tensor and some measure of damage which is
either a scalar (in the simplest case) or a tensor. For these measures of damage the kinetic
equations were postulated. Thus the damage measure is an internal variable and the theory does
not differ formally from the theories of plasticity or visco-plasticity. But damage and plasticity
or viscosity are of different physical nature. The conventional damage theories take into account
only mechanical and thermal forms of energy. However damage first of all is related to the
transfer of the thermomechanical energy into the surface one. Besides external sources of
damage such as microcrack growth due to external fields or some tools not depending on strain
and temperature may exist. The theory taking into account these phenomena following the
Griffith energy approach must be based on the energy equation (Kondaurov et al., 1989).

Consider a body whose particles in the reference configuration x is identified by the position
vector X and in the actual configuration ¥ at the time instant ¢ by the position vector x = x(X, 7).
Let us denote by F(X, 1) the deformation gradient, by v = ox/1 the particle velocity, by p, and
p densities of mass in x or y, respectively, by b the vector of body forces, by T the Piola stress
tensor, by G(X,l) the absolute temperature, by U the density of the internal energy without the
density U. of the intrinsic energy of damage, by q, the vector of heat flux, by r the density of
distributed heat sources and by r. the density of the external sources of damage. The energy
equation takes the form

ij(U +U. +%vv)dx =

X

SN

M
_[(TKT v +qK)an(a»<)+ J.pk(r +7. +bv)dx

o

where n_ is the unit normal to the boundary Ok in the reference configuration. The law of mass
conservation and equation of motion are

av
pdetF=p,, 0K5=VK-TI+pr ()

where V, is the gradient with respect to X and 1 is the unit tensor. With the help of (2) Eq(1)
may be written in the form which constitutes the Griffith energy approach
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where O = V. q, +p,r is the conventional rate of heating while Q. = pK(r‘ —U. ) is the energy
rate due to damage. Note that the external sources r. as well as r are under control and in
particular they may be put equal to zero. However in any process of damage U, is different
from zero. In the limiting case of a single crack U. and r., are described by delta functions with
their bearers at the crack tip.

The measure of damage will be defined by a second rank tensor 7. Similarly to the thermal
couple (8. n) where 7 is the density of the entropy, let us introduce the couple (wt, IT) where IT is
the quantity energetically conjugated to m, i.e. a second rank tensor which will be called the
entropy of damage. With the help of these couples the second law of thermodynamics may be
formulated as the modified Clausius-Duhem inequality (Kondaurov er al., 1989) according to

&, +8,+38.20 4

where &, =67~ Q/p, is the internal (mechanical) dissipation, 8, =q, V«0/(p,0) is the
thermal dissipation and

8. =m 1l —Q'—:n:l:] +U. -1 (5)
P

is the dissipation due to damage. Using (1) and (3) reduces the dissipation inequality (4) to the
lorm

—L.J+)1‘TKII.?+9T.]+TCZT.] +6, 20 6)
Py

We confine our consideration to the simplest case of damage of a thermo-elastic solid. The
response of such a material

(U(X.1). T, (X.0).0(X,1),a, (X.1).U.(X.1)}

is determined by the current values of the independent state parameters {F(X.t), n(X,1).
1(X,1), Vi 9(X,t)} _ Then the standard procedure of local continuation of the process and the

postulate of the thermodynamical compatibility permit to obtain necessary and sufficient
conditions of validity of (6)

T, =p, 0U/OF, 0=0Ujon, 0U/&(V,0)=0, m=0U/al %)

I et us additionally suggest the possibility of the passive continuation (I1= 0) of the process
from any state. In this continuation the intrinsic energy and distributed sources vanish. Then
from (7) it follows that

8, =0, 8.=0 (®)
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These equations lead to the equations for the thermal and damage entropies
p.n-Vx(07q,)=p.(07r+3;)
9
[8U (F, n, Iy + RAD]:TT = r. H(U.)

where R(IT) = U, (IT)/311 is the material tensor of resistance to damage and H(z) is the unit

step function. From (9) it follows that both passive (I:I = 0) and active (U. #* O) processes are
possible. If the process is active from (9) it follows that

GU/AI+R)TT =r(f),  T1#0 (10)

The damage process may be either reversible or irreversible. An example of the former type is
the process of partial melting, an example of the latter type is the process of micro-fracturing
without healing. In the case of an ireversible damage process the following inequality must
hold

U () = RAI):T12 0 an
This is also a condition for the change of a passive process into an active one and vice versa.

To illustrate the presented model let us consider the simplest isothermal case. Strains € are
assumed to be infinitesimal so that the stress state may be described by the symmetric tensor G .
Damage will be described by a scalar measure ©. The initial configuration is assumed to be
stress-and damage-free (o =0, U. =0). External sources of damage are absent (r.=0). The

density of the internal energy is taken in the simplest form, i.e.

pU (e, 0)=KI} /2+GJ? —a [0 —a Jo

(12)
I, =1, J?'=(e- L1/3):(e- [,1/3)
The density of the intrinsic energy of damage is taken in the form
pU.(0)=7,0+7,0%/2 (13)

Here K,G,a,,0t,,7,,Y, are the material constants. From (10) it follows that in the active

process (0 20, @ > 0)
cu=(ocpl,+ot_‘J—y,)/y2 (14)
The stresses are obtained from (7) and (12) according to

o=(Kl, ~a,0)l+(2G -0, 0/J)(e- 1/3) (15)
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Note that for © = 0 the expression (15) is non-linear. From (14) it can be seen that in order to
start damage the following equation must hold

a,l,+a J-7,=0 (16)

As an example let us consider the case of the monotone uniaxial straining €,, =€, €, = 0 for
i#1, j#1.From (14)-(16) it follows that

[ Ae 0 g; <e<g,
o = (A—yzocf)s+yzafs;, ® = a+(s—ag) for {e>e; >0, €>0
(A—YzGE)E*“YzOLEEE a,(s—e{,) ge<eg <0, £<0
where
o, =(o, to 2By, ei=v/a,, A=K+4G/3

Figure 1 shows dependence of the stress oy on the strain €,, =€ .

Fig. 1. Stress-strain diagram for uniaxial straining with damage

This simplest application of the developed model shows already the characteristic features of the
damage process: the existence of a threshold stress for the onset of damage, the elastic
unloading, the dilatancy, the occurrence of damage under the action of both tension and shear,
different ultimate strength under tension and compression. The possibility of a falling portion on
the stress-strain diagram should especially be emphasised.
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ABRUPT DAMAGE

Mesostrucrure of some solids such as polycrystalline brittle metals or rocks under action of high
stress undergoes substantial step-like changes. In some cases when defects of the damaged body
are numerous it can be again considered as a continuum. In these cases actually a phase
transformation takes place caused by the stress rather than the temperature. Hence thermal
effects may be neglected while the energy consumption must be taken into account.

Solids undergoing substantial changes of the internal mesostructure are usually described by the
models of the strain softening material. However existence of strain softening elasto-plastic
materials is questionable (Nikitin, 1996). A model considered in this paper is alternative to that
with strain softening. We consider a solid transforming under action of stress into another solid
with different mechanical properties and different stress-free state. Thermal effects are neglected
while energy consumption will be allowed for.

Assume for simplicity that the parental and damaged solids are both elastic and undergo
infinitesimal strain €. The elastic potential #, and stress © for the parental material may be

written in the form

w =%EZCZS, oc=C:e a7

P

Here C is the elasticity tensor of the parental solid. The elastic potential of the damaged body in
the same as in (17) reference configuration must involve zero and first order terms in strain

1
W, =W, - g:Clhe, + Es:Cd:s, o= Cd:(e -€.) (18)

where C is the elasticity tensor of the damaged solid, €. is the kinematic tensor of damage and
W. is the energy of the structural transformation due to damage.

Abrupt damage in general takes place when a function of the invariants of the stress tensor
reaches a threshold value. In the simplest case one of the next equations may be taken as a
criterion of abrupt damage

6, =0, or J,=1, (19)

where o, is the maximal principal stress, J, is the second invariant of the stress deviator and
c,. T, are material constants. Abrupt damage is analogous to a thermal phase transformation.
The counterparts of the temperature and the latent heat of a transformation are ¢, or 1, and
W. , respectively.

Nikitin (1995) has shown that a homogeneous stress state in the strain softening material is
unstable: strains are localised and dynamic process starts even in the case of quasi-static,
displacement controlled loading. The same reasonings are applied to the solid under
consideration. Thus even in the case of the quasi-static loading a static equilibrium becomes
unstable upon reaching of the threshold stress and damage may occur dynamically. The model
of the structural transformation with discontinuities along a moving front which is close to that
considered here was recently developed by Pradeilles-Duval and Stolz (1995). They considered
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the quasi-static process of transformation only. However in the all considered examples they
obtained the stress-strain diagram with a descent segment. This unavoidably must lead to the
loss of stability.

I'c demonstrate mechanical behaviour of a solid with abrupt damage we consider two problems:
stretching of a rod and propagation of a semi-infinite longitudinal shear crack.
stretching of a Rod

Consider quasi-static uniaxial stretching of a rod. The elastic potentials and stresses ¢ in the
parental and damaged solids may be written in the form

1
W, ==

&

2 -_—
E e, c=FE, ¢

(20)
Wy=Wm —Ed5'5+%Ed e, o=E(e-¢.)

lere the strain € is referred to the natural stress-free configuration of the parental material, £,
and E, are Young’s moduli of the parental and damaged solids, respectively, e.and W. are the
kinematic and energy characteristics of abrupt damage, Fig.2.

0
€ € d €
Fig. 2. Stress-strain diagram for a solid with abrupt damage

As it was mentioned above as soon as the stress reaches the threshold value o =0,

homogeneous stress and strain states in a rod lose stability, strains are localised at some cross-
sections and the dynamic process starts. Equation of motion in terms of displacement u is

3

o’u ,0u , ldo
a*=——
p de

@1
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Velocity of wave propagation a takes valuea =a, E( E, /p)]/2 for the parental solid and

a=a,=(E, /p)l/ > for the damaged one. Location and number of places of localisation can not

be found. The dynamic process in the vicinity of one of them, say at x = 0, will be studied. The
problem is self-similar since it does not contain any scale length or time. Hence the wave fronts
radiating from x = 0 are straight and stress and particle velocity v = Bu/ ot are constant between

the fronts. Due to the symmetry we consider the region x > 0 only. The fronts of unloading
x =a,t and abrupt damage x = bt start simultaneously, Fig.3. Velocity b of the front and the
stress drop behind it are to be found. The region x <a,l is atrest

v=0, c=0, (22)

Jii ﬂf

x=at

~~
a

X

Fig. 3. The wave fronts and stress distribution in the dynamic process of abrupt damage

In the region a,t <x <bt between the fronts of elastic unloading and abrupt damage both the

stress o, and the velocity v, are unknown. Behind the front of abrupt damage v = 0 due to the
symmetry while the stress o, is to be found. At the front of unloading the principle of

momentum gives
G,-0,=a,pv,, X=a, ' (23)

At the front of abrupt damage the condition of displacement discontinuity along with the
principle of momentum and the energy equation give

b(e, —€,)+v, =0, © -0, +bpv, =0
(24)

b(WF—WJ—%pv,z)+0'lv|=0, x =bt

From (20)

o, =E,¢, c,=E, (e, —€.) (25)
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Eqs(22)-(25) constitute the system of six simultaneous equations for determination of six
unknowns G,,6,.v,,€,,&, and b. Numerical analysis of the system shows that for small W. it
always has solution with 0<b<a,. With growth of W. velocity b approaches zero and
discontinuity at the front x =a ¢ vanishes. Solution of this system, for instance for £, = T E,s

e.=40,/E, =38, W.= 162 /E, give for the shock front velocity of abrupt damage
h=030 a,, for the stress drop behind the front of unloading o, = 0,670, and for the strain

Jocalisation €, =2.60¢,, ., Fig.3. Velocity b in this case vanishes when W. =30} / E,.

Propagation of a Longitudinal Shear Crack

Crack propagation is controlled by the energy absorbed near the crack tip. Broberg (1964) was
the first who calculated the energy flux into the crack tip for an elastic medium. The commonly
used expression for the energy release rate explicitly, in terms of the stress intensity factors was
published by Kostrov at al., (1969) in Russian and Kostrov and Nikitin, (1970) in English. On
the base of this expression the Griffith energy balance was extended on the case of dynamics
and gave dependence of the crack tip velocity on the stress intensity factors. However this
dependence was not always confirmed experimentally (Knauss and Ravi-Chandar, 1985).
Discrepancy between theory and experiment may be due to non-elastic behaviour of material
near the crack tip. Formation of numerous defects ahead the crack tip may be modelled as abrupt
damage.

Consider the stationary propagation of a semi-infinite longitudinal shear crack. Refer a crack to

the Cartesian co-ordinates x,, x, with the origin at the moving crack tip and the axis x,
directed along a crack Fig.4.

X2 /)

N

region of dqmage

\ elastic forerunner

X1

Fig.4. Longitudinal shear crack.
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The elastic potentials and shear stresses T, for the antiplane stress state are

1
w,= SHA Y TSR
(26)
i 1 ”
Wy =W =Wy, + SR Ts T =u(v,-7;)
Here y, = 0w/0x, is the shear strainand w is the only nonzero component of the displacement.

Since motion is stationary the derivative with respect to time ¢ reduces the derivative with
respect to x,

Equations of motion for the parental and damaged solids take the form

2 A2 2 2
(l_vﬁ) 2 :V+§_‘f=0’ b :[EL) 7
U by)ox] ox; = p
v? ow  O'w n v
i Jae-ar ool e®

The upper half of the plane x, = 0 only may be considered due to the symmetry. The crack
banks are assumed to be stress free

1,=0, x,=0. x,<0 29)
The case of trans-sonic velocity will be studied

b, <v<b,

Then Eq.(27) is elliptic and describes the non-singular state of the elastic forerunner in the
sector 0 <@ <@., where ¢ is the polar angle ¢ =arctg x, /x,. Taking in mind the study of

energetics of fracture the singular part of solution only will be considered. Therefore consider
solution of Eq.(28) of the form

w:cl|x2 +0v.(,x]!v2 +c2|x2 —1.)L(,x,|v2 (30)

12 " 5 .
where a, =b, / (v2 —bj) and c,, c, are constants. Stresses and strains in this case have the

square root singularity what is needed for non-zero energy flux into the crack tip.

Abrupt damage takes place along the ray ¢ = ¢.. Continuity of the displacement and the
principle of momentum give along ¢ =@. the following equations for the case under
consideration (Mukhamediev and Nikitin, 1989)
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y,cos@, +7v,sing. =0 (€29)]

y,sing. +ajy,cos@. =0 (32)

The energy release G, along ¢ = . is assumed to be finite. Then

VR, SINQ. (5 2
G =—4" " (aly;-v,)=0 (33)
g o3y )

Solution in the region adjoining the crack bank n> ¢ > ¢. with taking into account (29) is

w= ]<(—)C2 —(Xd:t")]/2 + K(xz —Otdx,)m

(34)
Here K plays a role of the stress intensity factor. If @. lies to the left from the characteristic
x, = —a,x, of Eq(28) the condition (29) can not be met. Hence ¢. <m—arctgo, and solution
in the region to the right of the characteristic x, =-a,x, 13

w=K(x, —a,x)" (35)
The conditions (32) and (33) lead to
¢. =arctga, (36)

The condition of displacement continuity (31) was not used what seems to be admissible in the
case of abrupt damage. However this condition appears to be met automatically.

Although solutions (34), (35) possess the square root singularity the energy flux into the crack
tip calculated on the base of them vanishes. For the first glance the result is disappointing.
However the experimental observations show that the stress intensity factors do not always
control crack velocity (Knauss and Ravi-Chandar, 1985). Energy release as in elasto-plastic
solids is diffused and is not concentrated at the crack tip as in elastic solids.

CONCLUSIONS AND DISCUSSION

Two different problems of fracture, namely gradual and abrupt damage are considered using the
Griffith type energy approach. The developed energy theory of gradual damage describes a
number of observed effects: existence of the threshold stress and strain for incipience of
fracture, dilatancy, fracture under both tension and shear but not under compression, possibility
of a falling portion on the stress-strain diagram.

The model of abrupt damage is alternative to the questionable model of the elasto-plastic
softening solid. Even quasi-static loading of a structure made of such solids leads to the
dynamic process with strain localisation and formation of shock waves of unloading and abrupt
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damage. In spite of the square root singularity of stress and strain the energy release rate at the
crack tip of a fast moving longitudinal shear crack in a medium with abrupt damage is absent.
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