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ABSTRACT

A software framework, FRANC3D, is developed to simulate arbitrary crack growth in both
solid and shell structures. A conceptual model of this crack growth simulator defines the major
components of the software and suggests some necessary requirements for any computer
implementation. The software makes use of a constrained hierarchy of topology-based
geometrical models using a boundary representation and a radial-edge database to define the
solid model. Crack propagation involves updating the geometry and topology of the model
based on a criterion for crack growth and the current equilibrium state information.
Equilibrium state information can be obtained from any stress analysis code provided that an
appropriate software interface exists. Changes to the mesh model due to crack growth can be
localized and minimized to the regions around the crack which implies that an incremental
crack growth process can be modeled quickly and efficiently even in three dimensions.
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INTRODUCTION

Cracking is a major problem in many engineering fields. From microscopic cracks in computer
chips to megascopic cracks in the earth’s crust, it has been seen that cracks can have a
detrimental effect on the performance of engineered structures. There are also instances, such
as hydraulically induced fractures in oil wells, where cracks are created purposely. In these
cases, however, if the crack growth is not in the desired location, direction and proper shape,
the crack can do more harm than good.

Although many crack growth problems can be simplified and analyzed in two dimensions, an
efficient and reliable three dimensional crack growth simulator is required for analyzing more
complex problems. Current practice generally relies on highly idealized models of observed
behavior, usually simplifying the problem to either a planar or two dimensional crack. The
accuracy of predictions based on these idealizations has not been well characterized, however,
and it is important that a fully three dimensional simulation tool be available for cases where
such simplifications are not possible.

Most commercial stress analysis software packages are not suitable for the purpose of
simulating arbitrary non-planar three dimensional crack growth. Although, many programs can
perform a stress analysis of a cracked structure, the subsequent propagation of the crack usually
1s not a simple process.
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This paper presents a conceptual model of a software framework that allows a user to
efficiently simulate three dimensional crack propagation in complex engineering structures.
An abstract model of the representational aspects of a crack growth simulation is discussed in
detail; some of the additional mechanisms that are needed to simulate crack growth are
summarized briefly. Two examples of arbitrary crack growth in real engineering structures
illustrate some of the concepts of the software framework and the conceptual model.

A CONCEPTUAL MODEL OF CRACK GROWTH SIMULATION

There are two primary aspects to the numerical simulation of arbitrary crack growth; these are
representation and physics. Representation includes the details of storing the geometry of a
cracked body in a computer and updating the geometric description to reflect crack growth.
Physics includes stress analysis, extraction of relevant crack growth parameters, and
determination of the shape, extent, and direction of crack growth. A conceptual model that
focuses on the representation of a discrete crack growth simulation process is presented below.

Crack growth simulation is an incremental process, where a series of steps is repeated for a
progression of models. Each iteration in the process relies on previously computed results and
represents one crack configuration. There are four primary collections of data, or databases,
required for each iteration. The first is the representational database, denoted R;, (where the
subscript identifies the iteration or increment number). The representational database contains
a description of the solid model geometry, including the cracks, the boundary conditions, and
the material properties. The representational database is transformed by a discretization
(meshing) process to a stress analysis database, A;. The analysis database contains a complete,
but approximate description of the body, suitable for input to a solution procedure, usually a
finite or boundary element stress analysis program.

The solution procedure is used to transform the analysis database to an equilibrium database,
E;, which consists of primary (loads and displacements) and secondary (stresses and strains)
field variables that define the equilibrium solution for the analysis model, A;. The equilibrium
model should contain field variables and material state information for all locations in the
body, and in the context of a crack growth simulation, should also contain values for stress-
intensity factors, or other fracture parameters, F;, for all crack fronts. The equilibrium database
is used in conjunction with the current representational database to create a new
representational model, R;4 7, which includes the incremental growth of the crack.

The simulation process is described symbolically as follows. A meshing function, M,
transforms a representational description of a cracked body to a discrete model suitable for
stress analysis,

M(R;) — A;.

A solution procedure, S, computes unknown field variables, E;, and fracture parameters, F; ,
S(A;) > E,F,.

A function which updates the represeniational model, U, takes the equilibrium state field

variables, the existing representation, and a function which predicts crack shape evolution, C,
and creates a new representational database,

U(E;,R;,C(F;)) = R;,;.

This process is performed incrementally (Fig 1), and is repeated until a suitable termination
condition is reached. Results of such a simulation might include one or more of the following:
a final crack geometry, a loading versus crack size history, a crack opening profile, or a history
of the crack-front fracture parameters.
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Fig 1. Incremental crack growth simulations; i denotes the increment of crack growth.
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This conceptual model is organized within a software framework called FRANC3D (Fig 2).
FRANC3D encompasses all components of the conceptual model except for the stress analysis
procedure. The individual components consists of unique databases and functions that operate
on the databases. These are described in more detail in the following sections.
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Figure 2. A conceptual model for crack growth simulation
incorporated into a software framework called FRANC3D.

MECHANISMS AND METHODOLOGIES FOR SIMULATING CRACK GROWTH

Before useful engineering simulations can be performed, thp abs_tract databases, R;, A;, E;, and
F;, and the abstract functions, M, S, C, and U, must be defined in terms of data structures and
algorithms. Much of this has been done for other applications of computational mechanics and
will not be detailed here. This section focuses on aspects of the mechanisms and
methodologies that differ in the context of fracture mechanics from other applications. These
include aspects of geometrical modeling, the use of computational topology, and model

hierarchies and constraint.

Solid Modeling For Crack Growth Simulations

Simulation of crack growth is more complicated than many other applications of computational
mechanics because the geometry and topology of the structure evolve during the simulation.
For this reason, a geometric description of the body that is independent of any mesh should be
maintained and updated as part of the simulation process. The geometry database should
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contain an explicit description of the solid model, including the crack. The three most widely
used solid modeling techniques, boundary representation (B-rep), constructive solid geometry
(CSG), and parametric analytical patches (PAP) (Hoffmann, 1989; Mintyld, 1988; Mortenson;
1985), are capable of representing uncracked geometries. Of the three, boundary
representation is found to be the most suitable for modeling cracks.

Crack faces are two surfaces that share a common geometric description. They can be modeled
quite readily with a B-rep modeler, which stores surfaces and surface geometries explicitly. If
explicit topological adjacency information (defined below) is available as well, two
topologically distinct surfaces can share a common geometric description.  Another
fundamental capability of any solid modeling system that is used for simulating crack growth is
the classification of points on a crack. Conventional point classification determines if the point
is in a body, outside a body, or on the surface of a body. A point on a crack surface cannot be
classified as any one of these three. It is simultaneously on the surface of the body at two
distinct independent locations, with no adjacent points that lie outside the body. Point
classification on crack surfaces presents no difficulty if both crack surfaces and explicit
topological adjacency information exist, another reason for choosing a B-rep model.

Structural Idealizations

To this point, the focus has been three-dimensional cracks in three-dimensional bodies. It is
common when performing stress analyses, however, to idealize portions or all of a body as a
dimensionally degenerate form, such as a plate or a shell. Such idealizations may provide great
savings in analysis time and effort, and & comprehensive simulator should be able to model
crack growth in these degenerate forms even though it adds extra constraints to the solid
modeler. A B-rep modeler is capable of soring and manipulating such degenerate forms which
is another reason for choosing boundary representation over other solid modelers.

Computational Topology as a Frameworkfor Crack Growth Simulation

As mentioned above, explicit topological information is an essential feature of the
representational database for crack growth simulations. The topology of an object is the
information about relationships, proximity, and order among features of the geometry—
incomplete geometric information. These are the properties of the actual geometry that are
invariant with respect to geometric transformations (Fig 3). A topology framework serves as
an organizational tool for the data that represents an object and the algorithms that operate on
the data.

topology = tiedto «— geometry
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Fig 3. Relationship between topology and geometry; a topological
entity can have any number of geometric descriptions.
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Explicit topological information is not essential for crack growth simulation. However, there
are at least four compelling reasons for using a topological representation:

1. Topological information, unlike geometrical information, can be stored exactly, with no
approximations or ambiguity.

2. The theoretical background supporting the concepts of topology and boundary graphs can
be used to develop formal and rigorous procedures for storing and manipulating these types
of data (Miintyld, 1988; Hoffmann, 1989; Weiler, 1986). )

3. Any topological configuration can represent an infinite number of geometrical
configurations. )

4. During crack propagation, the geometry of the structure changes with each crack increment
whereas the topology changes much less frequently.

Previous investigations into the use of data structures for storing information needed for crack
propagation simulations (Wawrzynek, 1986, 1987a&b) showed that topological databases were
a convenient and powerful organizing agent. The specific advantages of using topological data
structures are:

1. Local modifications can be made without the need to perform global reorganizations of the
rest of the data. )

2. The data structure maintains a consistent representation during all phases of modeling. This
is helpful during the intermediate stages of remeshing; the regions in the mesh where
elements are deleted are still consistently represented and recorded as topological entities.

3. The use of graph theoretical operators hides complexities in manipulating the actual data.
This encourages a modular system that aids in the development and maintenance of the
software. )

4. Efficient topological adjacency queries make this type of data organization ideally suited for
interactive modeling.

With respect to the abstract model for simulating crack growth, explicit topological information
is useful as a framework for the representational database, R;, and will aid in implementation
of the meshing function, M, and the updating function U. In particular, if a topological
database is used in conjunction with a B-rep modeler to implement the geometry model,
topological entities can serve as the principal elements of the database, with geometrical
descriptions and all other attributes (such as boundary conditions and material properties)
accessed through the topological entities.

Several topological data structures have been proposed for manifold objects. These include the
winged-edge (Baumgart, 1975), the modified winged-edge, the face-edge, the vertex-edge
(Weiler, 1985), and the half-edge (Mintyld, 1988) data structures. The so-called Euler
operators, that enforce the Euler-Poincaré formulae for entities in a graph, are used to
manipulate all of these structures, making the external interfaces identical. From a pracglcal
point of view, the difference among the structures is the efficiency with which the various
Euler operators and queries can be implemented.

In computational mechanics, it is often desirable to work with idealizations of real objects
(Shephard, 1985, Potyondy, 1993), some of which may contain components with no volume
(e.g., shells and plates). Such idealizations cannot be represented by the data structures
mentioned above because the idealizations create non-manifold topologies (Fig 4). That is, the
topologies cannot exist on a two-manifold (see Mortenson, 1985). Other features that
introduce non-manifold conditions include internal surfaces, such as bi-material int(_erfaces,
some crack configurations, and many transient configurations encountered during the
construction or modification of a topological representation of a body.

Weiler (1986) presented another edge-based data structure for storing non-manifold objects,
called the radial-edge, and outlined the corresponding generalized non-manifold Euler
operators. The basic topological entities used for modeling are vertices, edges, faces, and
regions. An internal crack, for example, consists of vertices, edges, and faces with a null
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Clearly, it is important that the mesh model is constrained to the geometry of the structure.
The hierarchy allows the mesh level model to inherit not only the geometry, but the simulation
attributes as well. Simulation attributes, which consist of such things as boundary conditions
and material properties are part of the original geometry model. The stress analysis procedure,
S, requires this data meaning that the mesh model must inherit the data from the geometry.
Each level can have its own data, but lower levels automatically inherit the data from the levels

above.

In incremental simulations, it is desirable that the changes to the model between increments be
kept to a minimum. When a portion of a model is modified, a certain amount of related
information becomes obsolete; to speed up the simulation process, the amount of lost
information should be minimized. For example, in the case of crack propagation, some
modifications to the geometry are made in the region near the crack front which invalidates the
mesh in this region. However, portions of the model remote from the crack should not be
affected. The total simulation time can be reduced significantly if only a small portion of the
model requires remeshing after each crack increment. The five levels of model representation
provide a convenient hierarchical framework for enforcing this concept.
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The Abstract Functions and Analysis and Equilibrium Databases

There are four abstract functions specified in the abstract model for crack growth, M, S, U, and
C. The purpose of the M function is to transform a geometry database to an analysis database

automatic mesh generation capability should be employed, and these are well described in the
literature (Baechmann er al., 1987; Cavendish er al., 1985; Kela er al., 1987; Lo, 1989;
Potyondy er al,. 1995, Shephard, 1985).

However, there are two aspects of mesh generation that are important in the context of crack
growth simulation that may be less important in other applications. The first arises due to the

is on the proper side of a crack. Algorithms that mesh such regions properly must resort to
topological information to select the proper node.

The second aspect of mesh generationis important when considering the concept of minimized
change to the model. In that case, ofien only a small portion of the body near the crack front
needs remeshing, However, the new mesh must conform to the remaining unchanged portions
of the mesh. Some meshing algorithms might not be capable of honoring such constraints, as
they generate nodes along the boundary of the region during the meshing process.

The stress analysis function, S, can be any numerical analysis procedure which takes in the
analysis database, A;, and produces the equilibrium state information, E; and the required
fracture parameters, Fj. The main requirement of the numerical method is that it is able to
accurately calculate the displacements and stresses near the crack front. Both finite and
boundary element procedures have been developed for this purpose (Aliabadi and Rooke,
1991). The type of analysis will depend on the need to model geometric and material non.
linearites as well,

The crack growth model, C, takes the field values at or near the crack front and evaluates the
potential for further crack growth. The implementation in the current software framework has
been described by Martha et al. (1993). Essentially, the displacements on the crack surface,
near the crack front are obtained from the equilibrium state database, E;, and converted to
stress intensity factors, F;. The stress intensity factors along the crack front are then compared
with the material fracture toughness to determine whether the crack front will extend. If the
stress intensity factors are greater than the material toughness, the crack will propagate, with
the direction and amount of extension defined by existing theories (see Aliabadi and Rooke,
1991). Crack growth invalidates the current representational model, requiring updates to the
geometry and sometimes the simulation attributes (e.g., if tractions are applied to the crack
surface).

The update function, U, primarily involves modifying the geometry, and possibly the topology,
due to crack growth and then remeshing of the locally modified portions of the model. The
procedure for propagating surface and internal cracks has been described by Martha er al.
(1993). Crack growth is constrained by the geometry as well as the crack growth model. In
other words, the crack surface cannot exiend beyond the boundaries of the structure even if the

crack growth model predicts such an occurrence.
ILLUSTRATIVE EXAMPLES
The capability of the above model for simulating arbitrary crack propagation in three-

dimensional structures and in dimensionally degenerate forms such as shells is best shown by
practical example. Two examples are given; the first shows crack growth simulation in a
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account for both the in-plane membrane loading and out-of-plane bending loading experienced
by a crack in the fuselage panel (Hui and Zehnder, 1993), are computed based on E;. A crack
growth model (C) that considers crack propagation in an anisotropic medium (Boone ez als
1987) is used to propagate the crack.

commodate the crack growth, the topology of the geometric
tional database needs to be updated from Rj to Rp. With the
aid of the model hierarchy and the concept of minimum change, only the region near the crack

tip needs to be remeshed (M) while other areas remain unaltered. Fig 13a shows the regions of
localized mesh deletion after growing the crack and Fig 13b shows the mesh model after

remeshing.

Since new edges are created to ac
model is altered and the representa

The crack trajectories and the stress intensity factor history are determined for each crack
Fig 14 compares the numerically predicted crack trajectories with the

growth increment.
from a full scale panel test (Miller ez al., 1992).

experimental measurements
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Fig 13. (a) The regions of localized mesh deletion after growing the crack, and
(b) the FRANC3D mesh model after remeshing.
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Fig 14. Comparison among computed and measured crack trajectories.

SUMMARY AND CONCLUSIONS

The software framework based on the described abstract model for crack propagation is ideally
suited for modeling arbitrary crack growth in three-dimensional solid and shell structures. The
use of a boundary representation to describe the structure, a topological database to store and
manipulate the data, and the constrained hierarchy of models to simplify the discretization all
serve to make the abstract model for crack growth simulations a versatile and powerful tool.
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