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ABSTRACT

The phenomenon of aging structures has focused attention on the problems of multiple-site
damage (MSD) and wide spread fatigue damage (WFD). In isolation each flaw or crack may be
safe. However, the cumulative effect of multiple, interacting cracks may significantly degrade
the damage tolerance of a structure. To assist in the damage tolerant evaluation of MSD this
paper presents a new finite element alternating technique algorithm suitable for calculating
Mode 1 stress-intensity factors for an arbitrary number of coplanar interacting three
dimensional cracks.
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INTRODUCTION

In 1990 it was reported that 31% of U.S. aircraft fleet exceeded the design goals set by the
manufacturers. It was also estimated that by the year 2000, 64% of the worldwide fleet
manufactured in the U.S. would be 20 or more years old, Hendricks (1991). At that time the
quoted replacement cost of an aircraft was around 55 million dollars. In comparison to this, the
cost of a major overhaul of a Boeing 727 was 2 million, whilst for a Boeing 747 this cost was
in the region of 4 to 20 million dollars. This trend in operating existing aircraft approaching or
operating beyond their intended design life is reflected in an increasing number of structurally
significant defects and increases the possibility of a reduction, or loss, of structural integrity due
to fatigue. In Australia, the importance of maintaining continued airworthiness was further
highlighted by the November 1990 failure of a Royal Australian AirForce (RAAF) Macchi
aircraft which suffered a port wing failure whilst in an estimated 6g manoeuvre, Young (1994).
A tear down inspection program involving two fuselages, two fins and five horizontal tail
planes was subsequently undertaken. Six of the wings showed significant cracking indications
and of approximately 1000 holes which were examined, 100 revealed fatigue cracks, including
major cracking in the D series rivet holes.

To meet the challenge of ensuring the continued airworthiness it is clear that a methodology for
rapidly and accurately assessing damage tolerance of a structural component containing
interacting 3D cracks under complex loading is required. This paper describes one such
approach.

METHODOLOGY FOR THE ANALYSIS OF INTERACTING THREE-DIMENSIONAL
CRACKS.

Swedlow (1988) noted that cracking in structural components is best characterised by three-
dimensional modelling rather than by conventional two-dimensional approaches. A part-
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through crack is a typical example. This type of crack often develops in regions with high stress
concentrations such as rivet holes and accounts for many common fatigue and fracture failures.
If the conventional finite element method is used to analyse such problems then a detailed
numerical modelling of the crack tip singularity is necessary. The relatively fine meshes near the
crack front required, to accomplish this, often makes the computation prohibitively expensive
and extremely time consuming. To circumvent this problem Annigeri and Cleary (1984) used a
surface integral and finite element hybrid method to model fracture problems in finite plane
domains. As in the FEAT the crack is modelled independently of the finite element mesh. The
required mesh complexity for standard finite element analysis is particularly apparent for
problems involving complex geometrical shapes such as fuselage structures with stringers,
stiffeners and lap joints, and even more so for those problems involving multiple cracks.

To solve problems involving multipk interacting three-dimensional cracks, in a computationally
efficient manner an extension to the finite element alternating technique (FEAT) has been
developed. When using the FEAT to solve three-dimensional fracture mechanics problems,
extensive use is made of the analtical solution for a single elliptical flaw, embedded in an
infinite linear elastic solid, where arbitrary normal and shear crack face loadings are applied to
the crack. Historically a complete solution for such a flaw did not exist until 1981 when
Vijayakumar and Atluri (1981) considered normal as well as arbitrary shear loading. These
authors derived expressions for stress-intensity factors near the flaw border, as well as for
stresses in the far field, for these generalised loadings. The key to implementing this solution in
the finite element alternating technique is the evaluation of the necessary elliptic integrals. A
general procedure for calculating these is detailed in the work of Nishioka and Atluri (1983).
When using the finite element alternating technique, the interchange between the finite element
model for the uncracked geometry and the complete analytical solution for an embedded
elliptical flaw means that accurate results can be obtained using a relatively coarse mesh,
without any complex mesh refinement around the crack tips. This greatly improves the
computational efficiency for solving three dimensional fracture mechanics problems.

A brief description of the manner in which the finite-element alternating technique operates
for a single crack is as follows :-

i) The standard finite-element methodology is used to analyse the uncracked finite
body under the prescribed external loads. The geometry of the uncracked body used here is
identical to that of the cracked body except that the crack itself is not modelled.

ii) As the crack is not modelled explicitly, non-zero stresses are calculated at the
location of the actual crack. These fictitious stresses must be removed in order to create the
traction free crack surface that exists in the problem under consideration.

iii) The analytical solution for an embedded elliptical crack subject to an arbitrary
distribution of tractions on the crack face is now used. To create the required stress-free
crack face the stresses determined i (ii), at the location of the crack faces, are now reversed
and a polynomial representation is obtained using a least squares fit. In order to accomplish
this the tractions along the crack surface are expressed as a finite order polynomial in x, and
X, as follows

1 1 M m
=Y XD AR X Ky (1)

i=0 =0 m=01n=0
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where a=1,2,3 and the values of (i,j) specify the symmetries of the load with respect to the
axes of the ellipse. The solution in terms of a potential function is then assumed to be of the

form

1 1 M k
f, = Z ZZCSi)-l,Isz—zm.znj 2
i=0 j=0 k=0 1=0
Using equations for the stress field it is possible to relate the known coefficients A, in
equation (1) to the unknown coefficients C, of equation (2), see Nishioka et. al (1983) for
further details. These crack face stresses are then applied to the infinite geometry cracked

problem and the associated stress intensity factors are calculated using :-
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where 8 is the elliptic angle and

A=a’sin’0+ajcos’ 0

Thus when all the parameters {C} have been determined, the stress intensity factor at any
point along the crack border can be directly evaluated.

iv) The stresses on the external surfaces of the finite body due to these applied loads
on the crack faces are now calculated using both (iii) and the solution for an embedded
clliptical crack in an infinite body. These boundary stresses are then reversed and applied as
external loads on the original uncracked body.

v) This addition to the external loads again creates new fictitious stresses at the
location of the crack which must once again be removed to obtain the stress-free crack faces
in the actual configuration.

All of the steps (i-v) in the iteration process described above are repeated until the residual
stresses on the external boundary are reduced below a user defined tolerance. The overall
stress-intensity factor solution is obtained by summing the stress-intensity factor solutions for
all iterations.

Note that to analyse the uncracked body, a three-dimensional finite-element model using 20-
noded isoparametric elements is used. The mesh used to describe the uncracked body must be
sufficiently refined to accurately characterise the stress distribution in the uncracked body. If
the geometry and applied loading of the body are relatively simple then not many elements are
required as the stress state is not complex. However, if by virtue of the geometry or the
loading, there are significant stress gradients in the uncracked body, then a more sophisticated
mesh will be required. It is also necessary that there be a reasonable amount of refinement in
the region of the crack to enable accurate fitting of a polynomial distribution to the fictitious
stresses on the crack face. In most problems this occurs if there are two elements spanning the
major and minor axes of the crack.

The extension of the FEAT approach to allow for the interaction effects of multiple
interacting three-dimensional cracks requires the incorporation of two additional iterative
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processes into the overall FEAT procedure. A brief description of this newly developed MSD
FEAT algorithm is as follows:-

i) Firstly, a standard finite-element process is used to analyse the uncracked finite
structure under the prescribed external loads, 6. Once again the geometry of the uncracked
structure used here is identical to that of the cracked structure except that the cracks
themselves are not modelled, see Figure 1(b). Hence there are considerable savings in mesh
generation and CPU time due to the greatly reduced number of nodes and elements required
for this model. This also has the advantage that cracks can be made of a different shape or
size, or indeed moved to a different location, and the problem re-evaluated with relative ease.
Such versatility is not a practical reality using a conventional finite element approach for a
multiple crack problem.

ii) As the cracks are not explicitly modelled, the finite element solution calculates

’

,
nonzero stresses o,, at the location of each of these cracks. In this notation o,, is the

stress produced on crack face 2 by the original boundary stress distribution o, As in the single
crack case these fictitious stresses must be removed in order to create the traction free crack
surfaces that exist in the actual cracked problem under consideration. For each of the cracks a
polynomial function, for the reverse of these fictitious stresses, is determined using equation
(1). These crack face stresses are then applied to the infinite geometry cracked problem. Note
that at this stage there is still no allowance for any interaction between the cracks.
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Figure 1 - First part of the MSD FEAT process.

The finite structure to be solved is illustrated in Figure 1.1(a). Using the principle of
superposition this is equivalent to the sum of the problems illustrated in Figures 1(b) and 1(c).
In Figure 1(b) a coarse mesh is used for a finite element analysis of the uncracked structure.
In Figure 1(c) the stresses on the crack faces are the reversed crack face stresses evaluated
from Figure 1(b) plus the interaction stresses (which will be evaluated in step iii).

iii) The crack interaction effect is now evaluated in the following manner :-

a) Using the stresses calculated in step (ii), coupled with the full analytical solution for
an embedded elliptical crack in an infinite body, the stresses caused by the presence of the
first crack on each of the other cracks can be evaluated in turn.

b) This procedure is repeated for each of the other cracks present.

¢) The final tractions on each crack are then the original tractions calculated in step
(i) plus the sum of all the ‘interaction’ stresses evaluated in this step, see Figure 2. In the case

"
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of crack two for instance: -0, = —0,;, + =0, ¥ O3 .
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This particular part of the process produces an ‘error’, in that the boundary forces on the
finite body are now no longer zero as they were in part (ii). This shortcoming is dealt with as
the cracks are progressively unloaded in stage (V).

iv) By employing equations (1) and (2) and the final tractions on each crack face the
associated stress intensity factors for each crack for this particular iteration can be calculated.

using the analytical
solution for an infinite
2 body this becomes
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Figure 2 - Accounting for the crack interaction effects.

v) In the next stage the cracks are progressively unloaded to ultimately determine the
new stress distribution on the external boundary surfaces of the finite geometry structure.
This procedure is performed as follows :-

a) Firstly the tractions on the crack number one, as evaluated in step (iii), are reversed
in order to make that crack surface stress free, see Figure 3. This process has two effects
namely :-

- the stresses at the positions of the other cracks are slightly altered. The size of this
change is calculated utilising the analytical solution for the first crack at the locations of the
other cracks. Thus the new tractions for each crack are updated and recorded.

- it produces an additional stress on the external surface of the finite structure. The
distribution of this stress on the external surface depends upon the actual location of the crack
in the structure and the stresses on that crack. This crack’s contribution to the total stress on
the external surface of the body is again evaluated using the infinite body solution.

b) The tractions on the second crack are now reversed. Once again this alters the
tractions on every other crack, and hence updated tractions for each of the cracks must now
be recalculated. At the end of this stage the faces of crack number two are stress free and a
new ‘residual’ stress has been placed on crack one. Crack two’s contribution to the stresses
on the external surface of the body are now added to those produced by unloading of the first
crack.
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Figure 3 - “Unloading” the stresses on the first crack face.

¢) Each subsequent crack is then progressively unloaded, in turn, by reversing the
tractions acting on it. As each crack is unloaded the tractions at every other crack face are
updated. At the end of this procedure the ‘last’ crack is the only one for which the crack faces
will be stress free. Every other crack will have a small ‘residual’ traction acting on it. The
final stress on the external surface of the body is the sum of all the contributions from each
crack, see Figure 4.
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Figure 4 - Illustration of the problem remaining after “unloading” all crack faces.

vi) This total boundary surface stress field is now fed back into step (i) above, and the
iterative procedure repeats itself except that the ‘residual’ stresses on each crack are now
added to the crack face stresses evaluated from the finite element analysis of the uncracked
structure. For each crack, the resultant crack face stresses are checked against some user
defined tolerance. If they are below this then the solution is deemed to have converged and
the iterative process stops. If not then the iterative process, described in steps (i -vi) continues
until convergence has been reached. The final stress-intensity factors for each crack are the
sum of the stress-intensity factors obtaired during each iteration for each individual crack.

It will be noticed that the criterion for convergence of a solution for the MSD FEAT is
necessarily different to that for a single flaw problem solved using the FEAT. For a single
flaw, the boundary stresses produced during each iteration can be used to check for
convergence. However, for multiple flaws consideration of the situation of two interacting
cracks in an infinite body shows that a boundary stress criterion would result in convergence
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to a solution which has not properly accounted for the interaction effects between the cracks.
In this case the crack face stresses would not produce boundary stresses and the algorithm
would stop after the first iteration, even though there were residual stresses on the crack
faces. These residual stresses would be produced by crack interaction effects, and in the
present example would be the only interaction forces present. Consequently by stopping at
the first iteration the crack interaction would not be included in the solution.

VERIFICATION OF THE ALGORITHM FOR MULTIPLE INTERACTING CRACKS.

To illustrate this technique let us consider the problem of two interacting quarter elliptical
cracks. This particular problem has been chosen to illustrate this technique because I) the close
proximity of the boundary surfaces to each crack will require the solution algorithm to cycle
through several iterations and ii) the presence of only one quadrant for each crack requires the
generation of fictitious crack quadrants in order to correctly utilise the analytical solution.
Diagrams illustrating the meshes used are shown in Figure 5 below. In this instance a set of 5
different crack configurations were considered. The crack aspect ratio (ax/a;) was fixed at 0.8,
and the distance between the crack centres was held at 400mm. A remote tensile stress of 100
MPa was applied in the z-direction. To obtain different values of the crack separation ratio,
Jambda (A=2a,/d), the semi-major crack length (a;) and the semi-minor crack length (a,) were
subsequently altered. The Mode I stress-intensity factor was evaluated at 5° intervals around
the crack front. The values obtained using the MSD FEAT algorithm are compared with those
obtained by symmetry in Figure 6. This figure shows that there is very close agreement
between the two sets of results. The maximum difference is ~3.5%. The steady increase in the
size of the K; values can be attributed to the increase in crack size necessary to obtain a larger
value of the crack separation value A.
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Figure 5- Cross-sectional view of the two meshes used to compare the interaction of two
quarter elliptical cracks in a finite body. The diagram on the left indicates the mesh used for the
new MSD FEAT algorithm, whilst the diagram on the right indicates a similar mesh employing

symmetry arguments used for comparison purposes.
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CONCLUSIONS

This paper has presented a new methodology for the analysis of multiple interacting cracks.
The cracks may be fully embedded ellipses, semi-elliptical surface flaws, or quarter elliptical
cracks. One significant potential advaniage of this approach is its ability to utilise the recent
advances in parallel and multi-processing. In this case the calculations for each individual crack
could be performed on a separate chip or processor. This has the ability to further increase the
computational efficiency of the FEAT approach.
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Figure 6 - Comparison of Mode I stress-intensity factors for quarter elliptical cracks in a finite
body. One set of results was obtained using the conventional FEAT, whilst the other were
produced using the new MSD FEAT algorithm.
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