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ABSTRACT

The Modified Virtual Crack Closure Integral (MVCCI)-method has proved to be a highly
effective and versatile numerical procedure for the fracture analysis of various crack problems
in linear elasticity. In this paper it is shown that under proportional loading conditions the
computer aided prediction of curved fatigue crack paths can further be improved in accuracy in
combination with the MVCCI-method. The numerical crack growth simulation is still based on
a step-by-step technique but using a piecewise curved approximation of the crack path. By this
method both, the new locus of the crack tip and the direction of the next step of crack extension
can be computed simultaneously by a virtual tangential crack extension. For a non-symmetrical
specimen under combined bending and shear loading the comparison of computationally
predicted and experimentally obtained curved crack trajectories show an excellent agreement in
all cases considered.
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INTRODUCTION

From failed structures and components it is known in engineering practice that cracks
frequently originate and extend in regions characterized by complicated geometrical shapes and
asymmetrical loading conditions. Hence the developing crack paths are found to be curved and
standard solutions for coplanar cracks do not apply. Therefore the prediction of such curved
crack paths is essential for the accurate evaluation of the final fracture modes of cracked
structures and components. In the present paper the crack growth simulation for proportional
loading conditions is also based on a step-by-step finite element analysis, like in investigations
of several authors (Bergquist and Gnex, 1978; Theilig, 1979; Sumi, 1985a, 1990b; Linnig,
1993; Theilig and Buchholz, 1994). The objective of this paper is to improve the conventional
simulation technique in accuracy by using a piecewise curved approximation of the crack path
on the basis of quantities which the straightforward Modified Virtual Crack Closure Integral
Method (Buchholz, 1984; Krishnamurty et. al., 1985; Raju, 1987) can provide. In order to
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show the significance of the proposed simulations technique the computational results are
compared with findings from a detailed experimental investigation by the aid of a non-
Symmetrical specimen, especially designed for combined bending and shear loading (Theilig,

1979).

CRACK GROWTH SIMULATION

Consider a crack in a two-dimensional linear elastic body under proportional mixed-mode
loading conditions. The state of siress ahead of the crack tip is given by
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where k; and ky are the stress intensity factors (SIFs) and the coefficients T, by and by are also
determined from the boundary conditions. It is known that in such a situation the crack will
propagate in a curved manner after kinking out of the original plane, (Fig. 1).

initial crack

Fig. 1. A kinked ard curved crack and the coordinate systems

= -2 ky/k; are predicted by all criteria. This direction wil result in the state of local Symmetry

1974). Thus, it can be stated that a continuously growing crack will form a curved path that

experiences pure mode I at any crack tip position, Fig. 1. Therefore the state of stress ahead of
the crack tip is given by
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¢ an efficient numerical mode separation technique in conjunction
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requirement the MVCCI-method has proved to be highly advantageous, because it delivers the
separated strain energy release rates of two modes simultaneously with good accuracy and
without any additional effort. For 8-noded quadrilaterals, which form the actual crack tip in
Fig. 5, the following finite element representation of Irwin’s crack closure integral relations can

be given (Buchholz, 1984; Krishnamurthy et al., 1985; Raju, 1987)
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NUMERICAL RESULTS 26- 26
26
In order to evaluate the significance of the improved crack path simulations a special non- A j 24
Symmetrical specimen for Jaters] force bending has been designed (Theilig, 1979) Along the ] 24
circular shaped transition regior of the specimen notches have been attached ar positions o= g 247 /' 1
0, 20, 40 deg. from which cracts initiated and extended with characterlstlcally curved crack E ! 22 .
paths during the fatigue tests, Fig. 6. For each notch position five specimens have been - e i 22 i
Investigated under proportional loading conditions. These crack paths were measured at the “ !
center line of the broken specimens. It was found that the experimental Scatterband is rather | t 204—
narrow. Furthermore, it can be recognized that the local Positions of the pre-cracks in the roots 20 ; 20 g
of the notches essentially determine the scattering, i3 i
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Fig. 6. Geometry and applied boundary conditions of the lateral force bending specimen Fig. 8. Simulated and experimentally obtameci1 Ergeg g’
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For the numerical calculations the kength 1, of the finite element model was chosen to 125mm. (a: ON eshing is necessary
In accordance with the design of e lateral bend specimen the further dimensions are given . irtual tangential crack extension b_y .Ah arem 1 nodes in order
with I = 25mm, b= 25mm, b, =45mm and t = 15mm (thickness). The lateral force was After each simulation step of Vlk‘ll' elements are generated providing addition
chosen to Fy = IKN with the corsequence that My = 200Nm. Considering  linear elastic in such a manner, that new crack tip
material behaviour Young’s modules and Poisson’

s ratio were chosen to E=2110° N/mm?
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SUMMARY

This investigation has shown that the numerica] tool of the MVCCI-method is delivering very
good crack path simulation results with linear strain elements and only moderately refined
finite-element-nets around the crack tip. The step-by-step simulation process with a piecewise
curved approximation of the crack path offers an efficient way for the numerica] analysis of
fatigue crack growth in complex two dimensional Structures under proportional loading
conditions. From the excellent agreement of the numerical and experimental results one can
conclude that the applied criterion of local Symmetry works well. The step-by-step simulation
in conjunction with the evaluation by the MVCCI-method provides the basis for a general
computational approach to the fracture analysis of complex crack configurations and loading
conditions that may be found in engineering applications within acceptable accuracy.,
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