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ABSTRACT

A cell endowed with the micro-separation characteristics of the material is key to formu-
lating a predictive tool for nonlinear fracture mechanics analysis. A cell should be viewed
as a three-dimensional material unit, initially a cube with linear dimension D on a side,
which contains a centered spherical void of initial volume fraction fo; D is related to the
microstructural length relevant to the tearing mechanism. Once the material-specific cell
parameters have been calibrated by one set of experimental data, a computational model
based on an aggregate of cells can compute relationships among load, displacement and
crack growth of a structural component with no restrictions on the extent of plastic defor-
mation and crack advance.

The discrete, three-dimensional nature of a cell enables it to capture important features
of interaction between the fracture process and the nearby mechanical state including
single cavity-crack tip interaction. It is this highly nonlinear coupling between the fracture
process zone (FPZ) and the background material which gives rise to the rich variations of
observed fracture behavior.

The computational model has been applied to fracture specimen geometries known to give
rise to significantly different crack tip constraints and crack growth resistance behaviors.
The model has successfully predicted the details of the load, displacement and crack growth
in these geometries including surface cracks in thick plates subjected to different states of
bending and tension.
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INTRODUCTION — CELL MODEL FOR DUCTILE TEARING

There is a long history of efforts directed at developing predictive computational tools for
nonlinear fracture analysis, Rousselier (1987), Bilby et al. (1992) and Brocks et al. (1995)
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among others. A fairly extensive list of such studies can be found in Xia et al. (1995) and
Gao el al. (1996a). What will be discussed here is an approach based on a computational

cell model of the material and the calibration of the material-specific cell parameters.

To motivate the model, we consider a typical structural steel containing inclusions on two
different size scales. The large inclusions, e.g. manganese sulphides, range in size from 1 to
5 microns and have mean spacings of approximately 100 microns. A second population of
submicron-sized inclusions, e.g. carbides, are found within grains and at grain boundaries.
At the microscale level, the creation of new surfaces ahead of a pre-existing macrocrack
follows a multistep failure process involving several interacting, simultaneous mechanisms:
a) nucleation of microvoids by fracture or decohesion of large inclusions, b) subsequent
growth of the larger microvoids, c) locelization of plastic flow between the enlarged voids
and d) the final tearing of the ligaments between enlarged voids, assisted by the rapid
growth and coalescence of secondary microvoids. Micrographs show these processes of void
growth and coalescence are confined to a narrow zone ahead of the crack front having a
thickness of no more than a few hundred microns.

The above failure mechanism suggests the use of a computational model illustrated in
Fig. 1 (Xia and Shih, 1995). A key feature is the modeling of the material in front of
the crack as a layer of void-containing cells. Each cell is a three-dimensional material
element which is initially a cube with dimension D comparable to the spacing between
“large inclusions”. Each cube contains a spherical void of initial volume fraction f,. For
the most part, the Gurson relation can be used to describe the stress-strain behavior of a
single void-containing cell element (Gurson, 1977). At the heart of Gurson’s relation is the
yield condition
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Here o, is the macroscopic effective Mises stress formed using the Cauchy stress, o, is
the macroscopic mean stress, & is the current flow stress of the matrix, f is the current
void volume fraction, and ¢, and ¢, are the adjustment factors introduced by Tvergaard
to improve the accuracy of the model (see Tvergaard, 1990).

The void in a cell grows under increasing strain. Eventually the strain-hardening of the
matrix is insufficient to compensate for the reduction in the cell ligament area caused
by void growth. Under these conditions, the cell begins to lose stress carrying capacity.
Shortly thereafter, microvoids nucleate from secondary inclusions bringing about the final
coalescence of voids that allows the crack to advance across the cell.

WORK OF FRACTURE

There are cogent arguments for embedding a fracture process zone (FPZ) within the elastic-
plastic continuum (see discussion by Broberg, 1995). In our model, a FPZ naturally forms
ahead of the advancing crack tip. This zone of width D and length ¢ is operationally
defined by the collection of cells in which the strain softening due to void growth cannot be
compensated for by material strain hardening resulting in a loss of stress carrying capacity.

The fracture process must obey an energy balance and under small scale yielding conditions
the balance relation is simply

G=1r (2)
where G is the Griffith-Irwin energy release rate. Under steady-state growth conditions T’
can be partitioned into the work of thefracture process, I'g, and the plastic dissipation in
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Fig. 1. (a) Void nucleation and growth creates a path of weak points in the material allowing nllacroc'rack
propagation by void coalescence; coalescence is assisted by microvoids nucleated from secondary 'mclus‘lons
(b) Material in front of crack is modeled by cell elements of linear dimension D; each cell contains a single
void of initial volume fraction fo. Cell behavior depends on fo and tractions on all sides. The aggregate

of cells is embedded within a conventional elastic-plastic continuum.

the background material, I'p, that is,
F = [‘g + Fp‘ (3)

Actually some amount of residual elastic energy is locked in the remote wake and this has
been included in I'p.

The work required to rupture a cell of unit area in the plane of the crack defines the work of
the fracture process I' and this work depends weakly on constraint within the range found
to exist near a crack tip (Xia and Shih, 1995b). For the first increment of crack growt.h,
I'o > [p so that G = [';: When crack extension is large compared to D and the material
is very tough, T'p > Io with the result G =~ I'p. The strong georr.xe?r_y c.lependence of
experimentally measured resistance curves (the portion subsequent to initiation of growth)
reflects the overwhelming contribution of I'p to the total work of fracture (cf. Hancock et
al., 1993, and Joyce and Link, 1995).

The above ideas are illustrated in Fig. 2; the plastic zone size, R,, in the backgrou.nd
material is not drawn to scale. Plastic dissipation in the background material (relative
to T'o) is necessarily small when ¢ ~ R, and must be large when € < R,. Moreover,
resistance curve characteristics can be explained in terms of the relative lengths £/D and
¢/ R, (Tvergaard and Hutchinson, 1992, 1994; Shih and Xia, 1995a, b).

MICROMECHANICS OF VOID COALESCENCE

Several mechanisms constitute the tearing process: nucleation of voids from the brit‘tle
cracking or decohesion of inclusions, growth of voids and, finally, void coalescence which
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Fig. 2. Schematic illustration of steady-state growth. The fracture resistance depends on material-specific
parameters and crack geometry. D enters explicitly as a scaling length for the steady-state toughness
['ss. The discrete, three-dimensional nature of a cell is highlighted. This enables it to capture important
features of the coupling between between fracture process and plastic deformation in the background

material including the strong triaxial stress effects on cavity growth and single cavity-crack tip interaction.

typically involves the participation of secondary microvoids. The mechanics of void growth
is fairly well understood and models for this phase are quite advanced (see review article by
Needleman et al., 1992, and references therein). By contrast, coalescence micromechanics
is less well understood and some aspects zre discussed below.

Holes nucleate from (weak) large inclusions at relatively low stress. As these holes grow to
large sizes under increasing stress a second population of small cavities nucleate from small
inclusions residing primarily in the high stress and strain regions between the larger holes.
The final tearing of the ligaments between larger voids is accomplished by the coalescence
of rapidly growing microvoids. This mechanism of hole-joining involving the participation
of small-scale voids along fairly narrow zones expends a small amount of energy compared
to what is required for continued macrovoid growth. In any case, it is quite evident that
the final outcome of this continuing competition — continued macrovoid growth vs. hole-
joining assisted by microcavity nucleation — is determined by microstructure and carbide
distribution as well as by external factors such as crack tip constraint.

For the materials in question, it appears that the underlying micromechanics of final liga-
ment tearing is dominated the coalescence of rapidly growing microvoids originating from
a population of small inclusions. Under high stress, a Jarge void grows in concert with the
plastic strain. Simultaneously, a local zone of high stress concentration emanates from the
large void and spreads across the materiel raising the stresses at nearby microvoids. As a
result, the hydrostatic stress surrounding one or more microvoids is raised to a level that
activates an unstable deformation mode in which the stored elastic energy drives the plastic
expansion of the microvoid. Although the overall stress decreases rapidly, small zones of
high stress concentration are generated near growing voids — causing even smaller nearby
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microvoids to grow rapidly. This process continues until the submicron ligament fails by
microcleavage or by shearing along crystallographic planes.

Two mechanisms of material micro-separation — flat dimpled rupture and void-sheet for-
mation — will now be discussed. Flat dimpled rupture is considered first. Figure 3(a)
displays a typical stress-strain behavior of a representative material volume, viz. cell ele-
ment, subjected to uniaxial straining. The response up to the peak stress is unexceptional.
When microvoids are absent, the load in the post-peak stress regime drops gradually as
shown by the dashed line. However, as can be seen the presence of microvoids results
in a dramatic drop in the load. The accelerated load drop to point ‘A’ is the result of
microvoid cavitation precipipating the final phase of the coalescence process shown in Fig.
3(b). Here, the largest microvoids have enlarged their volumes by more than three orders
of magnitude and the plastic strain has localized within a narrow band on the order of
the void size. At the same time, the growth rate of the large void has been substantially
decreased because of the reductions in the macroscopic stress.

We now turn our attention to the coalescence by void-sheet formation between sulphide-
nucleated voids (Cox and Low, 1974). Figure 3(c) shows a typical stress-strain behavior
computed for a representative material volume strained under low constraint. Here, the
relative peak stress is considerably lower than for the previous case. The macroscopic
stress in the post-peak stress regime falls off smoothly when microvoids are absent. When
microvoids are present, the stress drops more rapidly. At an advanced state, indicated
by ‘B’ the intense plastic shearing is confined to a narrow band width on the order of
the size of the enlarged microvoids. Figure 3(d) shows the band, joining large sulphide-
nucleated voids, being populated by cavitated microvoids. The growth rate of the large
voids has been greatly reduced while the microvoids aligned along the diagonal, and driven
by evolving high local stresses, have enlarged by more than two orders of magnitude.

The highly coupled nature of the processes leading to final coalescence appears to be
central to explaining both coalescence modes depicted in Fig. 3. The understanding
gained from studies of coalescence micromechanics will be valuable to the present work
in two ways: implementing a coalescence criterion and calibrating the cell response in the
final coalescence phase.

CELL MODEL CALIBRATION

Before the computational model suggested in Fig. 1(b) and illustrated in Fig. 2 can be put
to use, it is necessary to calibrate the material-specific cell parameters: the micromechanics
parameters ¢; and g, and the fracture process parameters D and fo.

Figure 4 contains an outline of the two-step calibration of the micromechanics and fracture-
process parameters. The parameters characterizing the continuum plasticity properties,
such as the yield strength and strain hardening are chosen to fit the true stress-strain
curve for the material.

The micromechanics calibration is performed in two stages: First. the ¢q; and ¢ param-
oters in the Gurson-Tvergaard (GT) constitutive equation are chosen by requiring the
stress-strain behavior of the GT cell element to match the computed 3-D solution for the
srowth of a spherical void in a representative material volume (RMV) taking into account
the strength and hardening characteristics of the matrix material. Details of the hole-
prowth mechanics calibration are provided elsewhere (Ialeskog et al., 1996). Next, the
cell traction vs. cell elongation in the post-peak-stress regime is calibrated by means of a
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Fig. 3. Flat dimple rupture mode of coalestence under high strain biaxiality in a medium strength alloy
(0o/E = 0.002, N = 0.1): (a) macroscopic stress-strain behavior featuring cascading softening, (b)
advanced coalescence state at load point A, displaying contours of effective plastic strain.

Void-sheet mode of coalescence under low strain biaxiality in a high strength alloy (oo/ E = 0.004,
N = 0.025): (c) macroscopic stress-strain behavior, (d) advanced coalescence state at load point B,
displaying contours of effective plastic strain.

Comment: An actual alloy will contain many more size scales of inclusions than have been considered
above. Now, imagine that additional microvoids of even smaller size scale are found in the vicinity of
the coalescence band. These minute microvoids embedded in a highly softened zone will in turn cavitate
repeating the sequence in (b) and (d). Thispattern of voiding gives rise to cascading load drops, indicated
by dashes in (a) and (b), which repeat itself until finally the submicron ligament fails by microcleavage or
shearing along crystallographic planes.
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Fig. 4. Two-step calibration of cell model: (i) the micromechanics calibration uses a representative
material volume (RMV), (ii) the subsequent fracture-process calibration requires a computational model
of the reference test specimen used to generate the fracture resistance data.

micromechanics analysis of the type discussed in the preceding section.

Experimentally generated crack growth data are required to calibrate the two fracture-
process parameters D and fo. From the correlation of crack tip opening with the spacing of
large inclusions it is reasonable to take D to be the measured crack tip opening displacement
at fracture initiation (CTOD;) (Xia and Shih, 1995). The remaining parameter, fo, is
chosen to give a best fit to a plot of the experimental fracture resistance vs. crack extension
for one test. The fitting process entails several finite element crack growth analyses of that
reference test specimen, using different values of fo. A fair estimate of fo can be obtained
by using a 2-D plane-strain computation and test data from a side-grooved specimen.
A better value of fo is found by fitting 3-D computational model predictions to fracture
resistance data from a standard, ungrooved test specimen. (The latter fo is slightly smaller
than the former).

Experience shows that once the cell parameters have been calibrated in the manner de-
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Fig. 5. Comparisons of measured fracture resistance for 2% Cr 1 Mo steel from side-grooved and ungrooved
single-edged-notch bend specimens (crack length to width ratio, a/W, equal 0.6) with computed best-fits
using plane strain and 3-D computational models. Note: CTOD| = Jic /3 Xyield strength.

scribed, the computational model permits the accurate calculation of relationships
among loads, displacements and crack growth, even for states where stability is lost. The
computational model places no limit on the amount of crack advance nor on the extent of
plastic deformation; moreover, once the model is calibrated no additional information is
required for the the application of this approach to the calculation of the fracture resistance
of structural components subjected to a wide variety of loadings, and having a range of
initial crack shapes and sizes.

CALIBRATION AND VERIFICATION OF A PRESSURE VESSEL STEEL

The calibration scheme described above has been applied to a 21 Cr 1 Mo steel taken
from a 20-year-old hydrogenating reactor pressure vessel. This a medium strength (yield
strength = 255 MPa) high hardening (N =~ 0.2) material. The parameters characterizing
the continuum plasticity properties, such as the yield strength and strain hardening, were
chosen to fit the tensile stress-strain curve for the material. A micromechanics calibration
of the material has been carried out by Faleskog et al. (1996); the hole-growth parameters
are ¢ = 2.0 and gz = 0.77. For the fracture-process calibration we used experimental data
from a single-edge-notch specimen loaded in bending, designated SEN(B). The CTOD at
fracture initiation was measured to be 300 microns — this value was assigned to D. The
fitting of the crack growth data from side-grooved and non-grooved SEN(B) specimens is
displayed in Fig. 5. An estimate of fo based on a plane-strain computational model is
0.0045. The better value, fo = 0.0035, was obtained from the 3—-D computational model;
this value was employed in subsequent applications. Figure 6 shows fracture surfaces of
three specimens tested to increasing load levels (reading from right to left); measured
crack profiles are compared with the corresponding model predictions. The agreement is
remarkable! A detailed discussion of the above fracture-process calibration and verification
is given by Gao et al. (1996b).

STRUCTURAL COMPONENT FRACTURE TESTS AND MODEL PREDICTIONS
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Fig. 6. Fracture surfaces of specimens broken apart after crack growth tests to different load levels (lowest
load at right, highest at left). Comparisons of measured crack growth at various points along the specimen
width with 3-D model predictions.

The predictive power of the computational approach based on a cell model of the material
has been demonstrated in a laboratory setting. The application of this approach to the
prediction of the behavior of structural components containing 3—-D flaws is shown in Figs.
7 and 8. Thick plate specimens were fabricated from the 21 Cr 1 Mo steel. A surface crack
was machined into the slightly curved thick plate designed to support different states of
bending and tension. The finite element model of a quarter of the plate geometry displaying
the crack plane and closeup views of the cell elements are shown in Fig. 7. A cell element
has area D/2 x D/2 in the plane whose normal coincides with the tangent to the crack
front. The calculations were performed with WARP3D a research finite element code de-
veloped to handle large-scale models of 3-D solids. We use the measured true stress-strain
curve, ¢ = 2.0 and ¢, = 0.77, and D = 300pm and fo = 0.0035. Figure 8(a) compares
the computed load-deformation relationships with the experimentally measured behavior
for two different tests. Figure 8(b) compares the measured crack growth at different points
along the surface flaw from test SCT#9 (this specimen has a larger bending component)
for two load levels with the predicted crack growth. It can be seen that the computational
model has reproduced accurately the full details of the load-deformation curves and the
crack growth profiles of both structural components. The detailed comparisons are de-
scribed elsewhere (Gao et al., 1996c). More experimental and computational studies are
required to validate the cell model as an predictive tool for nonlinear fracture mechanics
analysis. Nevertheless, we believe that the present results, when taken together with earlier
studies based on the local fracture approach (Xia et al., 1995, Gao et al., 1996b,c, Ruggieri
et al., 1996 and references therein), provides a convincing case for the predictive power of
computational approaches based on a cell model of the material.
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Applications to fracture in the ductile/brittle regime

Two effects are associated with ductile crack growth: the cumulative sampling volume is
increased and the crack tip constraint is altered. There are a fair amount of computational
results documenting constraint elevation with crack growth in rate-independent and rate-
independent solids (see Xia and Shih, 1995b, 1996, Gao et al., 1996a, Varias and Shih,
1993, Xia and Cheng, 1996, and references therein).

Treatment of the initiation of unstable cleavage fracture by way of extreme value statistics
has been discussed by Beremin (1983), Mudry (1987), Wang (1991), Wallin (1993) among
others (see references therein). In these studies a weakest link mechanism is assumed for
cleavage fracture. That is to say, at some point during the loading a microcrack nucleates
at a critical second phase inclusion and this event is sufficient to precipitate catastrophic
cleavage fracture. This approach has been extended by Koers et al. (1995), Xia and Shih
(1996) and Ruggieri and Dodds (1996) to take account of the ductile crack growth prior
to cleavage fracture. As in the Beremin model, the cumulative probability of unstable
cleavage fracture can be phrased in terms of a critical value of the Weibull stress, ow,
which scales with the product stress x volume. In several applications, the cell model
for ductile tearing, incorporating weakest link statistics, predicts the change to cleavage
fracture mode which is in agreement with experimental observations.
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