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ABSTRACT

Three dimensional solutions of singular stresses at the crack tip of a cracked plate are
obtained by superimposing three stress expansions. The solutions, satisfying not only equi-
librium and compatibility equations but also all boundary conditions, are of square root
singularity throughout the plate thickness. Deformations related to the singular stresses
are shown to be plane strain. All components of the singular stresses vanish on plate
surfaces, and the profile of the stress intensity factor in the thickness direction cannot be
determined by the asymptotic analysis alone.
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INTRODUCTION

The 3D singular stresses at the crack tip in a flat plate were attempted by many re-
searchers. Recent publications include those of Benthem (1977), and Kawai, Fujitani and
Kumagai (1977). While all the authors agreed upon a square root singularity for stresses
away from free plate surfaces, conflicting results were reported on the singularities close
to plate surfaces: the solution of Benthem (1977) was characterized by a stress singularity
less than square root, while that by Kawai et al(1977) by a stress singularity higher than
square root. The difference in singularities for the two above mentioned studies results
from different approximations used, as the solution by Benthem (1977) satisfied boundary
conditions on crack surface exactly but on plate surfaces only approximately and the so-
lution by Kawai et al(1977) satisfied boundary condition on crack surfaces approximately
but on plate surfaces exactly.

In the present paper, recent developments in the 3D plate analysis are exploited to
obtain an asymptotic expansion of singular stresses at the crack tip that satisfy not only
equilibrium and compatibility equations but also all boundary conditions exactly.
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BASIC EQUATIONS

Consider a plate with a through-the-thickness cut. The plate thickness is 2h, and both
upper and lower plate surfaces and the crack surfaces are traction free. Remote tensile
loading is applied on the edges and is symmetric about the middle plane of the plate. A
cylindrical coordinate system is established with the (r, 6) plane in the middle plane of the
plate. The origin of the coordinate system is at the crack tip with the plane 6 = 0 parallel
to the crack surface. »

The problem described above is among the thick plate problems which have been studied
by Gregory (1992). Gregory has rigorously proved that the most general state of stress o;;
(i,j=1,2,3) for the thick plate problem can be uniquely decomposed into three parts

PS s, _PF X
oij =0y t o510y (4,5 =1,2,3) ()
where of represents the (exact) plane stress state; o7 the shear state stress; and ofF

the so called Papkovich-Fadle state stress. The three stress fields are generated by three
different stress functions.

Plane Stress State

This is the well known (exact) plane stress (Timoshenko and Goodier, 1970). With
respect to Cartesian cocrdinates a1, T and a3, the stresses are obtained from stress function

P as

|

b = b +h(2)V $rm b = b +k(2)V (2)
off = —d),n-k(z)vzd),n ol =olf = odbf =0 (3)

where
v(1 —3(£)%)h?
6(1+v)
a comma indicates partial differentiation, v is Poisson’s ratio, and 1 is a two dimensional

function satisfying the biharmonic equation

2 2 2 2
22, _ (00 0O O ;
V= Gt 5 o + 5V 0 5)

k(z) =

Shear Stress State

Shear stress state is derived from a three dimensional potential function ¢ as

op) = 26,1 o5 = —2¢,12
Uisz = @22 — 0 0593 = ¢,23 (6)
033 = —¢u13 05;53 =0
where
2 2 2
Vng = &¢ ¢ .a_d) =0 (7)

dz? 0z} 9z}
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and

h
B3 lesmsth = 0 [, ¢dws=0 (8)

Papkovich-Fadle State

Papkovich-Fadle state stress is generated by a three dimensional bi-harmonic function
\ as

ofF = Xas Vi JZF = 2233 +vVixom
=2
U{;F = X233 —vVixa2 U{ZF =—-Vxa3 9)
=2 =22
UZF:_VX7 U;QF:VVX
where
ViViy =0 (10)
and
Xlza=th = X3 lzs=n (11)

It can easily be verified that any combinations of the above three types of stresses sat-
isfy not only the equilibrium equations and compatibility equations but also the boundary
conditions on free plate surfaces. The decomposition of the three dimensional stress field
in a thick plate into PS, S and PF stresses was shown by Gregory(1992) to be unique.

ASYMPTOTIC SOLUTIONS
Expansion of PS State Stresses

PS state stress consists of two parts: conventional plane stress and the modification
which is added to satisfy compatibility equations of elasticity. The stress function of PS
state stress is determined by solving a conventional plane stress problem with the boundary
conditions obtained from-averaging traction on the edges through-the-thickness, i.e.,

1

h
'-/hcfg ‘9=:I:7r dz = 0,

1 h
h 7 oo lo=ar ds = e

Following Williams (1952), stress function in Eqn (5) is expanded in terms of r as
W(r,0) = r'4(0) (13)
where p is an arbitrary positive number, and ¥(0) is determined by
(14 p)(p = D)™ +[(p = 1)* + (14 p)']" + ¢ = 0 (14)

Siresses obtained with above stress functions satisfy boundary conditions in Eqn (12) only
when
sin2pr =0 (15)



2106 Su and Sun

which leads to eigenvalues

| 3

p==, m=1,2,3, ... (16)

Only the odd integers of m in the above equation give singular stresses and are thus taken
for the asymptotic solutions. To retain all the possible singular stress terms, we take m=1,
3, 5.

For Mode-I (symmetric mode), PS stresses are

: 0 3 0
e = —%Blk(z)cos(g)r_% + ;ng(z)cos(é-)r_%
5.0 3. 3 15 3, _1
+[7 Bucos;; — 7 D1cos56 - — Bak(z)cos0r : (17)
3 0. _s 3 0, _3
ghy = §Blk(z)cos(§)r z — §ng(z)cos(§)r 3
3 9 3 3 15 3.1
+[ZBlco.s§ + Zchos-Q-O + —Q—ng(z)cos§t9]r 2 (18)
0. _s
ol = —g—Blk(z)sin(E)r_5 - —?)—sz(z)sin(g)r_%
1 .0 3 .3 15 . B s 1
+[ZBlszn§ + ZD,sm—Q—ﬁ + —2—B3k(z)szn§9]r 2 (19)
ofs = FS=0l"=0 (20)
where B,, and D,, are constants.
It is noted that terms of singularity 7=% and r~% appear in Eqns (17-19). These terms

satisfy the two dimensional conditions in Eqns (12) but violate exact three dimensional

boundary conditions on crack surfaces as oF5 is not zero when 6 = £x. Thus, the S and

PS state stresses are needed to make the crack surfaces traction free.

Ezxpansion of S State Stresses

Stress function ¢ is expanded as

oo

o(r02)=3" ¢n(r,0)cos(?——;lz) (21)

n=1
where ¢, is determined by
_, 1252 A
T4 (T )a = 0 (22)

which is obtained by substituting Eqn (21) into Eqn (7).
Each ¢, is again expanded as

$(r,0) = 3 bur(0)r* % (23)
k=1
or,
0 . 30 1 0
ba(r,0) = (amsmg)r-% + (amasin3)r¥ + [ansinT: + 5(%)2(%131'725)]% T (24)

where a,; (i=1,...) are constants. The corresponding stress components can be obtained
according to Eqn(6).
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Frpansion of PF State Stresses

The stress function is assumed to be (see Gregory(1992))

x(r,8,2) =3 xa(r, 0)Ex(z) (25)
)
where Ey(z) is defined by

Bx(z) = (5 - Dsin[A(% + D]+ (+ Dsin[A(z = 1)] (26)

and X is the root of the equation
sin2\ +2X =0 (27)

Without loss of generality, the summation in Eqn (25) will run only through rOf)tS whose
real parts are positive (see Gregory (1992)). The roots are thus in conjugate pairs.
Substituting Eqn (25) into Eqn (10) leads to

s A
Vixs - (E)ZXA =0 (28)
Consistent with the expansions of PS stress, x is assumed to be
Xa=2 Xow(0)rF3 (29)
k=1

o1

X = [cosg(z d,\lEA(z))]r_% + [cosg(z d,\gE,\(Z))]T% +
+1eos2 (5 duaBu(2)) + peosg (SO Pdn BG4 (30

where dy; are constants. PF stresses can be easily worked out with above stress function
and formulas in Eqn(9)

PS, S and PF stresses individually satisfy not only all equilibrium equations and com-
patibility equations but also the boundary conditions at the two plate surfaces. However,
the boundary conditions at the crack surfaces are satisfied only when the three stresses are
combined. These crack surface boundary conditions are

(31)

Oglo=in = Orolo=tr = Oz0lo=tr =0

Asymptotic Analysis of Order ro%

Adding the three stresses obtained in the expansions above, the amplitudes of stresses

: Ce
of order r~2 are

_s 0
o7 = —gu = F(z)cos(3) (32)

I

F(:)sin(g) (33)

s -3 B
(2—5) 0.;22) = Uiz 3) _ (34)

$
!
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where
F(z)= k(z) — —Zanlcos PR Z[(l —V)E\(2)" - ui—E,\( z)]dxn (35)

and the superscript (—2) denotes the stress amplitude associated with the singular term

r—%. The boundary conditions in Eqns (31) lead to
F(z)=0 (36)

and consequently,

ey

% o =3 2 5 =
giTz):ggp ):0'(92)_0'7(-12) O’; 2)_0'£ 2) ) (37)

T z

3

Asymptotic Analysis of Order r~2

Similar to the analysis of order 7=%. the boundary conditions in Eqn(31) yield

3 1 nm 1 , b .
- ing(z) + > Zawcost + i Z[(l —v)E(z)\ — Vﬁb,\(z)]dm =0 (38)

and - 32
nmw . nw i
ngl —h—unlsm—h-z = Z ﬁd,\] E)‘(Z) (39)

Using the above relations, all stresses of this order can be shown to vanish identically.

1

Asymptotic Solution of Order r~2
Boundary conditions in Eqns (31) require
| { 3 , A2
—{12—533k(z - Ezan3cosﬂz~ 210 = W)BA()" = vz Ea(2)ldis} =
717T

2 AZ
{ Z h2 “nlCO , ézz_'[(l*V)E,\(Z)"—VﬁE.\(Z)]d,\l} (40)

Z“‘“? 7r9i771—~+2”‘(l\2 "=0 (41)
n=1

After applying Eqns (40) and (41] in conjunction with Eqn (39), the amplitudes of stresses
of order r=% are

; o 0 30
o773 = K(2)(5c088 - cos®) Lg D K(z )(3cos + cos ) (42)
_1 0
Uf_& 7)o ]\'(:)(cm + sl'nﬁ) Z i lE'\ Ydai)e 055 (43)
P ol =0 (44)
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where
1 A2 A2 .
K()={1+ 55 5B, Zﬁ{"h_zE\( )+ (1 4+ v)Ex(2)"]dn} B (45)

In the above formulas, dy; are restricted by Eqns (36) and (39). Integration of Eqn
(39) gives

4N
Z a,,,cos =-> N zd“ NOEDY ﬁd,\l (46)
The last term in the equation above comes from the integration constant which is deter-

mined by using Eqn (8). Substituting Eqn (46) into Eqn (36) gives the sole condition for

dyy as

2
2B, k(2) :Z[(?—y)%E\ )+ (1—v)Es(z)" + (47)

A

DISCUSSIONS

From the asymptotic analysis above, it appears that the lowest order nonzero three-
dimensional crack tip stresses of a plate are of inverse square root singularity with the
amplitudes given by Eqns (42-44).

The in-plane components of the three-dimensional near tip singular stress field are of
square root type singularity with the intensity factor K(z) varying in the thickness direction.
I'he natural question is whether the corresponding near tip deformation is a state of plane
strain, i.e., €;; = 0.

As stated in Section 3, the constants dy; in Eqn (45) are restricted only by Eqn (47).
Differentiating the two sides of Eqn (47) twice with respect to z gives

22
By =3 (2 v)5z EX + (1 = v)E{"ldn (48)
\
or, by using definition of £, in Eqn (26),
A 22
2By = (1= ")} 15 Bad — (1 +v) 3 7 BYdn (49)
3 )

Substitution of results given by Eqns (42-44) into the following expression

1
€z = ;Vazz - %(arr + 069 +0:2) (50)
gives
1. 5 At Az, 0
€ = E[-—.ZVBl +(1=vhd -h—4E,\d,\1 —v(1+v)Y hz‘E,\d,\l]COf‘; (51)
PR 4 2

In view of the relation of Eqn (49), it is evident that e..=0

The result that plane strain deformation prevails over the entire thickness of the plate
near the crack tip is somewhat unexpected. One would anticipate a plane stress state close
to the traction free plate surfaces, where 0., = 0 but not necessarily e..=0. To further
investigate this paradox, we note that Eqn (49) reduces to

/\2
2B = —(1+ )3 5 EX(£h)dn (52)
T
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at z = +h since Ex(£h) = 0 by definition. It is easy to see from Eqn (45) that

K(£h)=0 (53)

Consequently, all the components of the singular stress field vanish identically on the free
plate surfaces. Thus, on plate surfaces, the distinction between the plane stress and plane
strain states vanishes.

The implication of the above finding is that the stress intensity factor K(z) vanishes on
the plate surfaces. These results are consistent with the finite element results obtained by
Shivakumar and Raju (1990) which indicate that the strain energy release rate seems to
drop to zero when approaching the plate surfaces.

At this point, one may surmise whether there is a unique functional form for K(z).
Since K(z) depends on dy; (see Eqn (45)), to answer the above question, we must find out
whether the coefficients dy; can be determined unambiguously. Unfortunately, except for
the trivial case when v = 0 (and thus dy; = 0), d, cannot be determined uniquely by the
crack tip asymptotic analysis alone (see Su and Sun, 1997).
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