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ABSTRACT

I'hree-dimensional problem on a slow quasi-stationary crack growth in materials exhibiting
specific properties of gas emission in bulk is considered. The crack occupies arbitrary domain
in plane in initial moment t. The connected diffusion-elasticity 3D problem is reduced to two
21 boundary integro-differential equations which then are solved numerically.
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INTRODUCTION

A number of materials used in modern engineering exhibit specific properties of gas emission in
bulk under certain mechanical and/or physical influence or aging. Gas emission due to aging is
typical for a number of polymers. Some metals and alloys applied in nuclear-power engineering
bhecome gas emissionable under radiation ( Likhachev et al., 1982).

(ius emission in bulk can frequently cause crack or crack-like defects initiation and their kinetic
propagation. In this case, crack kinetics analysis implies simultaneous consideration of gas
Jdiffusion into the crack and slow crack growth due to the action of inner gas pressure and
other mechanical loads .

We suggest a numerical method for solving the 3D problem for a medium with cracks
occupying a plane region. Problems of gas diffusion into crack and crack propagation are
solved by reducing to integro-differential equations in the crack domain. The kinetics
calculation is performed step by step procedure. The algorithms applied develop those
suggested earlier (Balueva, 1993).

In model calculations, the crack velocity v at each point of the crack contour is assumed to be
dependent on the stress intensity factor K at this point. The more general situation when v is a
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functional of the gas concentration near the crack tip and stress intensity factor can be studied
by a similar way. These results will be published elsewhere.

STATEMENT OF THE PROBLEM

We consider the slow quasi-steady growth of a tensile crack initiated at t=0 and occupying a
domain G in the plane x3=0. The velocity v at each crack contour point is assumed to be
dependent on the stress intensity factor N (as is adopted in kinetic crack theories) and specified
by a curve v(N) which is the material fanction. The crack is growing under the action of a gas
produced by gas emission sources disiributed in bulk. The crack is modeled by an ideal sink
(far from equilibrium state). The crack velocity is assumed to be small as compared to the
transient period. Under this assumption, the flow into the crack can be found from the solution
of the stationary diffusion problem for each t. Suppose that initially there are two diffusion
sources of intensity W placed inside the body on the x3-axis symmetrically at a distance &3 from
the crack .In view of the symmetry with respect to the crack plane, we can consider the
problem in the half-space x320.

The boundary value problem for the gas concentration c(xy, X2) is following one:

pe= -2 505 )5 (5, - £) 8+ 8],
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where D is the coefficient of gas diffusion in the medium.

-0 for (x1x;) € G is the unknown function in

The diffusion flow density q(x1,x2) = 8¢/
the problem. As usual, to construct an integral equation for q, we first consider the gas
diffusion problem with sources in a medium without the crack:
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The solution to problem (1.2) is the function

c (X,X5,X3) = W (L+—1—), where

4nD\R, R, (1.3)
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and the gas concentration in the crack plane is given by
1
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Let us now write out the solution to the diffusion problem without sources but with the
gas concentration inside the crack to be equal in magnitude and opposite in sign to that in the
first problem:

T (RN . S TR Y (1.5)
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o, ™ ;

The following integral equation is obtained for the diffusion flow density q from Eq.(1.5):

\\ 1
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,(x,%,) €G; (1.6)

Similarly, if a nonzero gas concentration ¢’ =¢°,(x,,x,) € G is given inside the crack,

x;=0

then we arrive at the integral equation
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The following integral equation is valid if two sources symmetric with respect to the crack
plane are placed at arbitrary points (a,b,E3) and (a,b,-&3) in bulk:

1 q(€,,&,)dE, d&, =__\E_ 1 —c° 1.8
ZnJ’J‘G\/a_il)z o =l e Y c*(%,%3): (1.8)

Using the superposition principle, we obtain the following equations for several point sources
of gas diffusion inside the body or for those distributed with density W(x1,%2,X3):
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where W, are the intensities of the sources at the points (a;,b;,+€3) and T is the region of
diffusion sources distribution with density W(x1,x2,X3).

To search for the elastic fields induced by the gas diffusion into the crack, we consider the
problem on a normal tensile crack with load p applied to its surfaces, where p is the gas
pressure, which depends on the crack volume and mass of gas entered. The gas is assumed to
be ideal; then the crack volume V, the mass of the gas M, and the pressure p are related by the
Clapeyron equation pV=MRT/. Here j,R, and T are the molar mass of the gas, the gas



2178 Balueva

constant per mole, and absolute temperature, respectively. Reducing the elasticity problem to
boundary integral equations, we obtiin the system

aE.8)E,de, W 1 (1.11)

1
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V()= [ e 8 ds, (1.14)
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n(t+At) = n(t)+ QA (1.16)
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ues,0= NG 0, (117)
v(s, t) = f(N(s, 1)), (1.18)
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where integral equation (1.11) for qx;,x2) can be replaced by Egs. (1 .7)-(1.10) depending on
the number of sources and their distribution. Equation (1.12) is the integro-differential
equation for the crack surfaces dispcement u(x,,xz); further, n,Q=0n/ét, E, and v are the
number of gas moles in the crack, gis flow rate through the crack, Young’s modules, and
Poisson’s ratio of the medium, respectively. Equations (1.17)-(1.19) provide the calculation of
the stress intensity factor N and of the new crack contour.

The solution is performed stepwise (Balueva at al.,1992). The main computational difficulties
of the first t-step are related to solving integro-differential equations (1.11)-(1. 12) and in
searching for a new crack contour via the calculated velocities v at the previous contour points
(see Eq.(1.18)). The last computation is a separate calculational problem. A procedure for
solving the elasticity problem for a normal tensile crack (Eq. (1. 12)) has been developed
(Goldstein at al., 1973). For this reason, we focus on a numerical method for solving the
diffusion equation (1.11). In case ofa circular crack region, we obtain an analytic solution.

NUMERICAL METHOD FOR SOLVING THE DIFFUSION EQUATION

Our method for solving the integro-differential equation is based on the variational-difference
method (Balueva et al., 1985). Narmely, after discretization, the values of q at the grid points
are searched for as an expansion through a system of coordinate functions Wpip2,

q(x;,%;) = Zcplpz‘l’plpz(xpxph), 2.1

plp2
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where \p1p2 is a bilinear spline function with a support in the four grid cells adjacent to the
point (pih,p2h) of the grid with the step h.

I'he coefficients cyi, coincide with the values of q(x,x,) at the grid points and are found by
minimizing the corresponding quadratic functional:

mln{l(h) = Z Z aPrﬂerz"h anPz c‘ll“lz + 22 cP)P; bPle (22)

PiP2 4192 PiP2

1 o ] —
Appaaiz — Hpr-aillpa-aa] (27)2'[‘[““ E Vo, (& h)\qu (€,h)dg, (23)

sinzghal) sinz(%hézj

WPlPl (é,h) - h2eih(p1§|+1=zéz) . 5 1 =, (2.4)
(5"&”) (5*1&2)
bops = ] POX1 X)W, %, ) dx 2.9)
Eg:‘nz
1 @.6)

O S LA S
PP D xexd 4l

I'he minimization is carried out by the gradient projection method with an automatic step
¢hoice according to the relation between the linear and the actual functional increments.

AXISYMMETRIC PROBLEM OF DIFFUSION FROM A POINT SOURCE

I'he integral equation (1.11) in the case of a circular crack of radius a and a point source lying
on the x3-axis acquires the form

2;

iy f q(p)pdp = g(r),

o o+t +p’+2rpcose

r<a, 3.1
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I'his integral equation (3.1) can be rewritten

f 2
faerE)e® Lo, 32)
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where K(k) is the complete elliptic integral of the first kind.
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Using properties of Bessel functions, we have

2n
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and Eq. (3.2) becomes
© a T[
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Then Eq. (3.5) can be represented in the form

J.(D(u)JD(ur) du :—l—g(r), O<r<a
0 2n

Using properties of the Bessel transformation, from Eq. (3.6) we obtain

g(r), forr<a

T‘D(u)ulo(ur) du= {0
A :

forr>a

Thus, we arrive at the system of dual integral equations
< 1
j@(u)Jo(ur) du=—g(r), 0<r<a,
T
0

jud)(u)Jo(ur) du=0, r>a
0

The solution to system (3.9) has form

_ 1 d {ys(y) dy
(D(u)—?!cosut(—ai[——— dt,

or after substituting of g(y)
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from that we can find function q(r) in need by formula
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q(n)= [ ®(u)u Jo(ur) du. (3.11)
0

Omitting cumbersome details of integration, let us write out the final expression for diffusion
flux density through the crack

1 7.2
q(r)=— & ! & arctan ? rz (3.12)
3
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As the crack radius a—>oo0, the solution has the asymptotics

€5

1
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This formula coincides with the solution to the problem on a diffusion source in a half-space.
On the crack contour, that is, as r—a, we have the asymptotics

1 1

© (£, +a’ 1E)Val -1

q(r)—

Thus, this solution has a root singularity, which is actually observed in the problem of a gas
diffusion into the crack for consideration given at infinity.

Comparison was made of numerical results with those obtained analytically. Good agreement is
observed in the crack domain up to the last but one boundary node in the vicinity of the
contour. The numerical solution becomes “bad” at the gird points adjacent to the boundary.
This is due to the root singularity of solution on the crack contour. An effective Boundary
Refinement Method is applied for improvement of numerical solution near boundary.

CRACK PROPAGATION DUE TO GAS DIFFUSION FROM THE BULK SOURCES

Software is developed to calculate the crack propagation time and evolution of the crack shape
and sizes under the action of gas diffusion from the unit source or sources distributed in bulk
with a given density. These program is based on the described methods for solving the integro-
differential equations (1.11) of the diffusion problem and eqs.(1.12) of the elasticity problem.
A quasi-steady statement of the problem is used. System (1.1 1)-(1.19) is solved at each time
step. The incubation period ¢, before the crack growth start is calculated. This is a time before
the crack opening under the gas diffusion action achieves the value for which the maximum
stress intensity factor along the crack contour becomes greater than the fracture toughness
threshold value K.

Calculation of the growth time 7,, is performed by the following scheme:

1) the gas pressure is calculated in the current crack region  G()
pi(t) =n()RT 1V, (1), where V,(t) is the volume of the crack occupying the new region G(#)
for unit loading p=1, the gas mass n(t) being found at the previous step.

2) the stress intensity factor along the crack contour is calculated and used for
calculation of the crack velocity vi.
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3) normal distances toward the crack contour overlapping discrete contour points
during this propagation are defined as A, = v, At. Time interval Af is calculated so that contour
points spreading with maximum velocity vy pass a small distance Aw chosen experimentally.

4) a new contour shape is defined using a smoothing procedure over propagating and
stationary points coordinates.

5) the diffusion problem is solved; the integral flow  g(x,,x,) through the crack
surface, the total gas flow rate Q, and the new gas amount in the crack n(f + Ar) = n(t) + QAt
are defined.

6) the above procedure is repeated starting from step 1.

Model calculations were performed for a circular plane crack. Its kinetics was studied in the
case of the gas diffusion from a unit tulk source. The incubation period t; and time ty of the
crack growth from the initial to doubke radius were calculated. The dependence of the values t;
and t,, on the distance, £, from the dffusion source to the crack plane was studied. On
diminishing the distance &;, the gas flix to the crack increases and the gas pressure becomes
greater, thus leading to the stress intensity factor growth along the contour. As a result, the
velocity tends to its stationary value (on kinetic diagram), propagation and incubation times
being practically independent of £;. Gne more series of calculation was performed to study the
dependence of life-time on the diffusion source intensity W. The greater the source intensity,
the less is the life-time.
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