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ABSTRACT

In general. the experimental data of fatigue crack growth rates scatter very much even under
identical experimental conditions with constant amplitude loading condition. It is ,thus,
essential to take into account the data scatter of crack growth rates by using statistical approach
for a reliable fatigue crack propagation analysis. In this study, fatigue crack propagation tests
were conducted on a very thin 2024-T3 aluminum alloy under constant amplitude loading. The
distribution of the fatigue crack propagation life is estimated by using the stochastic Markov
Chain model based on a modified Paris-Erdogon equation. The fatigue lives under different
loading conditions are estimated by using this model.
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INTRODUCTION

For the airplane structures, the fatigue damage analysis is the essential technique, since the
airplane structures are generally under random variable loading condition. The airplane
structures mostly consist of very thin 2024-T3 Al alloy. Therefore, it is find out of the fatigue
crack growth behavior in very thin plate and data-base should be constructed based on the
fatigue crack growth behavior of very thin specimens. The variability of fatigue crack growth
rate. however, needs to have the statistical model. Generally, the following three sources of
variability in experimentally obtained fatigue crack growth data are commonly regarded as the
most decisive(Sobczyk and Spencer, 1992): (1) the difference in material behavior among
identically prepared specimens (due to difference in stress concentration at grain boundaries,
effects of thermal processing,etc); (2) uncertainty in the fatigue and fracture process itself;
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(3) difference in environment among tests at the same load conditions and with the same
materials.

There are two ways to consider the variability of the fatigue crack growth. One is estimation of
crack growth life distribution from the Paris-Erdogon differential equation model(Ishikawa and
Tsurui. 1987). The other is the Markov Chain model that is proposed by Bogdanoff-
Kozin(1981, 1983) as an example of the evolutionary probabilistic approach. In this study, we
used the Markov Chain model based on a modified Paris-Erdogon equation.

A modified Paris-Erdogon equation(Euw and Hertzberg and Roberts, 1972) used in this study
is

da/dN = C(A Kem)" 1
where da/dN : crack growth rate
C , m : random variables

AKer = Ao Jmsec(%) (0.5+04 X R)

. Min sress
R :stressratio (= ———
Max sress

The principal purpose of this paper is to find an appropriate stochastic model and to evaluate
reliability of this model for the fatigue crack growth analysis of a thin 2024-T3 aluminum alloy.

BACKGROUND

Bogdonoff and Kozin(1985) used the Markov Chain model so as to analyze statistically the
fatigue cumulative damage process. They defined a duty cycle(DC) to be a repetitive period of
operation in the life of a component during which damage can accumulate. And, they maked
the following assumptions ;

1. Damage states are discrete and labeled F1,.2,...,b
where state b denotes replacement, or failure.
2. Increment in damage at the end of a DC depends in a probabilistic manner only on the
amount of damage present at the start of the DC, on that DC itself, and is dependent of how

damage was accumulated up to the start of that DC.
3. Damage can only increase in a DC from the state occupied at the start of that DC to the

state one unit higher.

If we define that P; is the probability of remaining in state j during one step and q; is the
probability that in one step damage goes from state j to state j+1;
pj = Prob{remain in state j | initially in state j}
q; = Prob{go to state j+1 | initially in state j}.
The (1 X b) row vector
Po={ 7\ sMyseeesTyys0 }
specifies the initial distribution of damage, where 7 G =Prob{damage is in state j at x=0}, and

bfn =1,7,=0.The assumption that 7, =0 , means that no component is in the failed state
;=1
1

b initially. For this simple version of the model, the DC severity is defined by the (b X b)
probability transition matrix.
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where p; >0, pj+qj=1
In this matrix, we can know that all states are transient except for the last which is absorbing.
The probability of being in state j at the x is given by the (1 X b) row vector.

px = { Px (1, Px (2), Px 3); .., Px (D) }
where py (j) = Prob { damage is in state j at time X }

b - -
2px(D=1.px(1)20
We then have Markov property,

px = po P* )

For the fatigue cumulative damage, however, the Markov Chain model of Bogdanoff and
Kozin is based simply on probabilistic process. Therefore, the model is not definite physical
meaning of fatigue damage. Because of this reason, the crack growth law of the Paris-Erdogon
is imported and its weakness can be maked up for. In the Markov Chain model, it is assumed
that crack length & increases by stage. Therefore, damage state i defines as

a;=ag+ida 1=0,1,2,...,n 3)
where a; = crack length in state i(mm)
ag = initial crack length(mm)
The probability of going to next state, q;, can be defined as stress intensity factor function.

9;=q(4K,) (O]
In this approach, transient probability g; can be obtained by using a modified Paris-Erdogon
equation. The modified Paris-Erdogon equation is

- da/dN = C(A Ke)™ )
It is assumed that m and C are random variables, so m and C are taken as random variables
independent of each other.

& 4
Eiany C(AKer) )

where E[variable] = mean value of variable
Crack didn’t propagate during duty cycles (6n-1). But if &n-th cycle acts, then crack would
propagate. and that probability is q. Therefore probability distribution of &N is

P[ON =)= fa (60)=ap™ ™
Mean and variation of duty cycles number are first order and second order moment,
respectively.

(3)

E[0N)= Eon fu= I dnq(l-a)™"' =

o |-



1332 Lee et al.

Var[oN]= E[oN? ]~ (E[6N])? =1§§ ®

As this two equations, transient probability q is
C
q=’£(AKeﬁ)m (10)

Using this eq. (10), it can be obtained transient probability that considers scatter of fatigue
crack growth.

EXPERIMENT

Specimen and Experimental method

The material used was 2024-T3 Al alloy plates of 1.02 mm thickness. Its chemical composition
is shown in Table 1 and mechanical property is shown in Table 2.

Table 1. Chemical composition of 2024-T3 Al alloy (wt %)

Si Fe Cu Mn Mg Cr Zn Ti
011 023 446 058 144 004 003 0.02

Table 2. Mechanical properties of 2024-T3 Al alloy

Yield strength (MPa) Tensile strength (MPa) Elongation (%)
324 442 16.7

The geometry of specimen is CCT(Center Cracked Tension) as shown in Fig.1. The
longitudinal direction of the specimen coincides with the rolling direction. All fatigue crack
growth tests were carried out under axial loading using a servo hydraulic testing machine of 10
Ton capacity. The repeating frequency was 10 Hz. The stress range was Ao = 58.8 MPa, and
the mean stress was o, = 39.2 MPa. Hence the stress ratio was R = 0.25. The temperature of
the specimen was room temperature. Crack growth was monitored using a traveling microscope,
it can measure with accuracy of 0.01 mm. The crack length was measured at the two tips of the
crack on both sides of the specimen. The time interval of the measurement was 5000 cycles.
Fifteen specimens were tested under identical experimental conditions.
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Fig. 1 Geometry of specimen.
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EXPERIMENTAL RESULT AND DISCUSSION

Fatigue crack growth under constant amplitude loading

The crack length(a) is plotted against the number of cycles(N) in Fig.2. Measurements were
started at different initial crack lengths. Therefore, we obtained the data by interpolation after
translating all curves initial crack length into a,=7mm.
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Fig. 2 Crack length plotted against the number of repeated cycles

in A12024-T3 , R=1/4

The relation between the crack growth rate,da/dN, and the effective stress intensity factor
range, AK , ,is shown in Fig.3. da/dN was evaluated as

Sliz 41— 8 (11)
dN N, +N;
where N; and Niy; = the number of cycles at which ith and (i+1)th measurement, respectively.
a; and aj4; are the value of a at N=N; and N=Nj., , respectively.

AK ff Was evaluated as

AKefr=UAKapp=UAoal7za-sec(7za/W) (12)

where aK .= effective stress intensity factor range,
AK app™ applied stress intensity factor range
U = crack closure parameter
W = specimen width
Elber showed empirically for 2024-T3 Al alloy that

U=0.5+04R (13)

Min.load

where R= ——
Max.load
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Figure 4 shows the correlation between m and logC. It is seen that a strong negative correlation
exists between m and logC. Therefore, if m(or logC) is generated as random variables by

" following 2-parameter Weibull distribution, then we could obtain values of m and logC to take
106 - ° account their strong negative correlation .
° &
U g =
2 28°°
g ‘ W 2 Fatigue life estimation
& 04 ' . .
3 Markov Chain model was constructed that duty cycles are 1000 cycles and Ja =0.2mm. Figure
5 shows a edf s(empirical distribute function) of the cycle number to reach a=11mm, and the
corresponding estimated result obtained from the proposed model. Figure 6 shows a edf’s and
ot estimated result at a=17mm. The agreement between edf’s and estimated result is excellent.
. . 10
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AK{(MPam'?) o8} va
Fig. 3 Relationship between fatigue crack growth rate and stress %
intensity factor range, R=1/4 %4 o
& 06
. Substituting egs. 9 and 10 into Paris-Erdogon equation, it is possible to correlate crack growth 3
rates with effective stress intensity factor range for different stress values. § o4l
| %: C(AK 5 )™ =C[(05+ 0.4R) Aoy - sec(za / W)] ——————— (14) ‘E o
: The modified Paris-Erdogon equation was applied to the data points of each specimen using the S . pr&.ﬁae? a]r?;hu;s

method of least squares. It is assumed that m and logC are random variables since the =

specimen-to-specimen variability of m and logC were known. They both show approximately | 00 o == P — -

normal distribution. They follow 2-parameter Wen:)ull distribution, such as | N of cycles N

F(y=1- exp[—(;)ﬁ ] (15) i Fig. 5 Comparison between empirical results and the predicted fatigue
i life distribution using Markov Chain Model, a=11mm
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Fig. 6 Comparison between empirical results and the predicted fatigue
life distribution using Markov Chain Model, a=17mm
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Figure 7 show comparison between edf’s and estimated results of different loading conditions.
The agreement between edf’s and estimated result seems to be excellent. This model can
propose reliable fatigue life prediction.
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Fig. 7 Comparison between edf's and the predicted fatigue life distribution

using Markov Chain Model under different loading condition, a=11mm

CONCLUSION

In this study, fatigue crack propagation tests were conducted and data scatter of fatigue crack
propagation was considered by using statistical model. Random variables m and C are imported.
Transient probability ,q, that considered scatter of fatigue crack growth is

C
=—(AK )™
q i( off)

In this equation, AK,; is value that considered stress ratio. The distribution of fatigue crack
propagation life is estimated by using the stochastic Markov Chain model based on a modified
Paris-Erdogon equation. As a consequence, result of experiment and that of estimation are
coincided very well.

REFERENCES

Bogdanoff J. L., F. Kozin (1981). A critical analysis of some probabilistic models of fatigue
crack growth. Engineering Fracture Mech., 14, 59-89.

Bogdanoft J. L., F. Kozin (1983). On the probabilistic modeling of fatigue crack growth.
Engineering Fracture Mech., 18, 623-632.

Bogdanoff J. L., F. Kozin (1985). Probabilistic models of cumulative damage. In: B-models of
cumulative damage , pp. 63-162. John Wiley & Sons, USA.

Ishikawa H., A. Tsurui (1987). Stochastic fatigue crack growth model and its wide applicability
in reliability-based design. Current Japanese Material Research., 2, 45-58.

Sobezyk, K., Spencer, B. F. (1992). Random Fatigue from data to theory. In: Scatter in Fatigue
Data , pp. 42-43. Academic Press, San Diego.

Von Euw E. F. J., R. W. Hertzberg and Richard Roberts (1972). Delay effects in fatigue crack
propagation. ASTM STP 513.,230:259.


User
Rettangolo


