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ABSTRACT

Fatigue crack propagation testing of Al-Li 2090 alloy specimen was performed to investigate
fatigue crack closure in terms of crack length. A simple analytical model that is analogous
{o the experimental procedure for determining crack closure load has been developed to
predict variations of closure stress intensity factors as a function of crack length. From the
analysis, the variation of closure stress intensity factors was shown to be directly correlated
to the roughness (i.e., the asperity geometry and distribution) of the crack surfaces. When
the asperity height is relatively high as compared to the crack length, the closure stress
intensity factors become a function of the crack length. Otherwise, the closure stress
intensity factors appear to be essentially independent of the crack length. Also, an efficient
method for estimating the experimental closure load and stress intensity factor has been
developed using crack surface opening displacements at the load line. The resulting data
appeared to correlate very well with analytical results.
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INTRODUCTION

Much experimental work investigating the relations between the roughness dimension and
crack closure measurements has appeared in the literature (Allison and Williams, 1985; Liaw
¢t al., 1987; Zawada and Nicholas, 1988). Most attention was focused on the effects of
microstructure (e.g., grain size) on crack closure level in the near-threshold regime. Insome
of the work, the importance of slip character on closure at relatively. high levels of AK has
been emphasized (Allison, 1988; Bretz et al., 1984). For example, in some materials such
as Ti-8Al or ferrous alloys, crack closure was seen OVer a broad AK range (including
relatively high crack growth rates) and it was found that the magnitude of the roughness
dimension on the crack surface can play an important role in crack closure behavior with
increasing crack growth. From the experimental data, it was shown that the closure stress
intensity factors for most titanium alloys are constant regardless of the amount of crack
growth, but for some ferrous alloys they decrease in a reversed-exponential manner as the
crack length increases. In this study, a model predicting both variations will be developed
on the basis of Linear Elastic Fracture Mechanics (LEFM) concepts. To find the effects of
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roughness dimension on the crack closure level, an analytical simulation of the experimental
procedure is introduced. In addition, a review of experimental procedures used in
determining closure load by the extrapolation of two compliance curves will be made and a
method of eliminating the disadvantages of such techniques will be suggested.

EXPERIMENTAL PROCEDURE

The material studied was as-received Al-Li 2090 T8EA41 alloy. Compact type specimens,
25.4 mm wide, 30.48 mm high, and 2.54 mm thick, were used to measure the fatigue crack
propagation (FCP) rates in accord with ASTM-E647. All specimens were side-grooved to
a depth of 0.127 mm to restrict crack propagation in the L-T orientation. The thickness on
the net section was used for calculating stress intensity factors. Fatigue crack propagation
tests were conducted using a digitally-controlled closed-loop servo-hydraulic machine under
ambient laboratory conditions. Two different load ratios(R=P;/P,.,), 0.1 and 0.7, were
chosen to study crack closure anc roughness dimension. The loading frequency was 5 Hz
with a haversine waveform. Varicus load ranges of 356 ~761 N were used for increasing AK
tests. The crack length was determined by three different methods: the standard potential
drop method using a constant DC input of 10 amps; the compliance technique; and optically
using a travelling microscope. A laser extensometer having a maximum resolution of 107
mm was used to measure the distince between the notch edges at the load line.

ANALYTICAL MODEL

Experimentally, the closure load, P, is determined by extrapolating two segments of
compliance curves and finding the intersection as shown in Fig. 1(a). This procedure is
based on the physical notion that contact occurs when two straight lines intersect, indicative
of a change in the compliance of the cracked body. However, this procedure significantly
simplifies the actual process of crack surface contact, since some contact already occurred
at P, before the load reaches P,. In this case, the contact stress distributions on the contact
area may be expressed by the assumed function:

p(x) =p, (1-x/c)” (¢Y)

The schematic views of this and its parameters are shown in Figure 1(b). If the distributed
contacts shown in Fig. 1(b) are converted to contact by a single equivalent imaginary rigid
asperity, the asperity height corresponds physically to the crack surface opening displacement
(COD) occurring at the location of the single asperity, C,, resulting from an equivalent
concentrated force. For an assumed value of n, the asperity location in the equivalent system
can be analytically found by invaking the following assumed constraints:

a) the total contact force summed up along the crack surface is equal to the
concentrated force in the equivalent system and
b) both the distributed forces along the crack surface and the equivalent

concentrated force develop the same crack surface opening displacement at the
location of C,.
The concept describes the fact that if the equivalent force is located at C, both systems are
equivalent. In Ref. (Jung, 1994), C, is found for cases of crack closure in the center
cracked tensile (CCT) specimen and the compact tension (CT) specimen and various values
of n.
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Fig. 1. (a) Determination of closure load and closure crack opening di_splacement. (b)
Closure stress distribution in the wake zone behind crack tip and equivalent system.

I'o obtain the variation of closure stress intensity factor with crack extension, two crac.k
configurations having crack lengths of a and a?, respectively, are considered as shown in
fig. 2. a is the crack length obtained after precracking or the crack length at which the
measurements of crack closure are made for the first time. It is assumed that an a_sperny
lying between two fracture surfaces is initially 2D units high anq it is located at a distance
of C, from the crack tip. C," is expressed as ggatthy where ¢, is a constant which can be
determined through analysis using experimental data. a? is the crack length increased by an
incremental change in crack length from a". Regarding the change in crack length, the ratio
hetween two crack lengths, Ry, is defined as:

R =al@/a™ = (a 1) +Aa) /a ¥ (2)
o

Also, an asperity is assumed to have a height of (2D)y. The constant, ¥, gccounts for
changes in the asperity height resulting from changes in crack tip deformau_on and ‘t.he
roughness of the crack surface with crack growth. As a crack grows, the plasx.lc zone size
and the magnitude of plastic strain increase. Thus the resulting change in crack tp
deformation and roughness on crack surface will be a function of crack length. The gsperlly
is also assumed to be located at the distance of C,? from the crack tip, which is defined as
4 new contact distance for the growing crack. For simplicity, C,? is consnde'red for lw(g
different cases: one is that C,? is assumed to be R,C.'" (Model A) and the other is that C,
is assumed to be independent of the increase in crack length (Model B).
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Fig. 2. Schematic view of models used to predict variations of closure load with crack growth.
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Now, in order to simulate the experimental procedure by a single asperity contact, an
asperity in both crack configurations is assumed to come into contact between the fracture
surfaces for remote loads, P, and P,®, respectively. Then, for a given geometry and
asperity dimension in each configuration, the crack surface opening displacement resulting
from a remote equivalent load must be equal to the height of the asperity to have the asperity
contact. This results in the following equations:

Pc(jl) F:(a (“,x:a— (1) _Cc(ll)) - 2D (3)

PP F (a®,x=a'@-c/f’) = (2D)y @
where F’(a,x) is the shape function for the crack surface opening displacement calculated for
the remote equivalent load and it is expressed as:

Fr(a,x) =Y F(a,x) ag(a) 5
Here Y is a material constant and F(a,x) and ag(a) are the shape function and geometric

function for finite dimensions, respectively. From Egs. (3) and (4) the closure load, P2,
for the increased crack length is found as:

Py = (yv/R) P (©6)
where

R = F-(a® ,x=a (@ ch’f))/F' (a V), x=a ) 'Cc(ll)) 7)

Using P, the closure stress inensity factor for the increased crack length is calculated by:
K = p® y(al®) (8)

where U(a) is the weight function used to calculate the stress intensity factor. By
manipulating Egs. (6) and (8) and noting that

py = kP /u@a®) )

the following is obtained:

K? =(y/R) (u(a®)/u(a®)) ki’ (10)

Therefore. the variation of closure stress intensity factor with crack growth can be found in
normalized form using the initially measured value in terms of crack length and some
assumptions for the constants. The expressions for closure load and stress intensity factor
for both Models A and B and the geometry of the CCT or CT specimens are detailed in Ref.
(Jung, 1994).

In some cases, the change in the asperity dimension can be obtained by measuring the crack
surface opening displacement at the load line normal to the crack growth direction when
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asperity contact occurs. This quantity is Vg in Fig. 1(a), which corresponds to the crack
closure load, P,. The V’s for two crack configurations are defined, respectively, as:

v = p Fi(at,x=0) (11

vy =l F(a®,x=0) a2

From Egs. (11) and (12), a closure ratio is given by:

v v = (p#/py) Fr(a®,x=0)/F (a™, x=0) (13)

cl

Substituting Eq. (6) into Eq. (13) yields:

v v = (y/R) Fr(a®,x=0)/F (a6 x=0) (14)

Therefore, the variation of asperity height is expressed as:

y = (V& vi¥) RF (aV, x=0)/F (a®,x=0) (15)

Here, R was given in Eq. (7), which depends on the asperity location. In some cases such
4s Model A in the CCT specimen, when the function for crack surface opening displacement
varies linearly with crack length and asperity location, v is simply given by:

y - vE v )

I'herefore, the change of asperity height can be measured directly at the load line. In other
cases, it becomes a function of asperity location, so that the measurements of v are subjected
lo constraints for the assumed value of n. Using this concept, the crack closure load and
stress intensity factor are determined, respectively, as:

p? = (v /viP) (Fr(a¥,x=0) /F(a?®,x=0)) PL’ (17

K2 =(v@F (at,x=0)U(a®) VS F (a®, x=0)U(a™) )kl (18)

Note that the asperity is assumed to be extremely rigid.

RESULTS AND DISCUSSION

In order to see the differences between Models A and B, the crack closure load and
corresponding closure stress intensity factor as a function of crack length are plotted as
shown in Figs. 3(a) and 3(b). For simplicity, they are calculated for a constant asperity
height and for 0.25 < a/W < 0.7 and a constant applied load. The resulting variations are
expressed in normalized form by dividing by the starting values, i.e., P,(1) and K (1),
respectively. In a increasing AK tesing with a constant load, the maximum stress intensity
factors are only a function of crack length. These are also normalized by the starting value
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(K,..(1)). Figure 3(a) shows a monotonically decreasing crack closure load for both models.
But the crack closure load for Model A decreases more rapidly than the one for Model B as
a crack grows. In Fig. 3(b), variations of closure stress intensity factors with crack growth
are shown. It decreases monotonically for Model A, but for Model B it is almost constant
with increasing crack length. The curves in Fig. 3(b) are very similar to the schematic
variations of closure stress intensity factors for roughness-induced crack closure in Ref.
(Allison, 1988), which was experimentally measured for several materials. The only
difference is that Model A predicts an exponentially decreasing value with crack extension.
The differences between Models A and B may be explained on a physical basis in terms of
the roughness dimension on the fracture surface. If the roughness dimension is small
compared to the crack length, it is not comparable to the crack surface opening displacement,
so that C, seems not to vary much as a crack grows. In other words, a few leading
asperities near the crack tip are the most effective ones for crack closure. In this case, the
closure stress intensity factor will become constant with crack extension corresponding to
Model B. On the other hand, if the roughness is large, it becomes comparable to the crack
surface opening displacement and it is expected that there are more chances of contact for
distant asperities and the contact areas increase with crack growth. Then, C, increases as
the crack length increases, so that variations of closure stress intensity factor can be
understood in terms of Model A. From this, it is seen that this model can lead to different
variations of K, for different levels of the roughness dimension. Actually, in experiments,
it was found that the average roughness dimension for Model B (Drury, 1992) is much
smaller (~ 10um) than the one (~300pum) for Model A (Jung and Antolovich, 1995). Also,
the contact ranges observed from experiments are different for both cases, i.e., contact for
Model B occurs only near the crack tip (within 50 microns) but it could occur all over the
crack surfaces for Model A. Here, the materials considered for Models A and B are Al-Li
2090 and IN-718, respectively.

; 20 . 20
@ (T T] ® “I 17 [T T 11
i e (A] e ! i —— (A)
— —— (BCo-0.008) - | —o— (B.Co )
= f =
E 12 %’ 12
el X
T o T o
Q‘: 06 \.:* § 06 -
02 02
00
o Al 2 3 4 s ° Al 2 3 4 )
Kmax / Kmax(1) Kmax / Kmax(1)

Fig. 3. Variations of normalized (a) P, and (b) K with crack growth for Models A and B.

The analytical model (Model A) is examined with respect to variations of closure stress
intensity factor with crack growth through comparisons with experimental data for Al-Li
2090 Alloy. From the load-displacement curves measured as a function of crack length, the
crack closure loads are found using extrapolation techniques for the two compliance curves.
They are plotted as Exp.(P,) in Fig. 4(a). Also, the resulting closure stress intensity factors
are plotted as Exp.(K,) in Fig. 4(b). From these figures their variation in the early stages
of crack growth is unpredictable due to scatter in the data. In order to eliminate this
problem, Eqgs. (17) and (18) for obtaining crack closure load and stress intensity factor are
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used. The experimental parameter in the equations, which is the variation qf c195ure crack
surface opening displacement at the load line (V.), is measured as shown m.F.lg. 5. The
crack surface opening displacements at the load line for the maximum and minimum load,
i.e., V.. and V., increase as the crack length increases, as expected.‘ Ho.wever, thf: closure
crack surface opening displacement at contact, which was defined in Fig. 1(a), is nearly
constant as a function of crack length. Therefore, the resulting crack closure load and stress
intensity factor as a function of crack length are plotted as curves of Pc,(Yc[) and K (V) In
Figs. 4(a) and 4(b), respectively. Comparing both experimental curves, 1t 1s fpund thaF the
irends are the same if the data for experimentally determined P, and K, are simply shifted
{o the left. The analytical solutions for Model A and the CT specimen are used to calcu.late
variations of closure load and stress intensity factor for various assumed 90’5. From Figs.
4(2) and 4(b), it is found that for c,=0.4 both analytical and expgnmemal data are
correlated. As mentioned in the previous section, in order for the analytlgal curves to ylgld
an acceptable fit of the experimental data, the parameter ¢, whlcr) was given as a materlal
constant, must be appropriately assumed or experimentally determined. Erom the literature
(Hu et al., 1991), it was experimentally seen that "duplex ceramic” materials s.how theT same
¢,=0.4 (n=0.7) and the extensive contact process zone. This also was seen in Al-Li 2090
Alloy, in which the contact occurs over a large area of the fracture surfaces due to the large

roughness dimension.
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Fig. 4. Comparisons of (a) Exp.(Py) and P4(V,) and (b) Exp.(K;) and K, (V) with
analytical results for various ¢,’s.
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CONCLUSIONS

A simple analytical model that corresponds to the experimental procedure for determining
crack closure load has been developed to predict variations of closure stress intensity factors
as a function of crack growth. From the analysis, the variation of closure stress intensity
factors was shown to be directly correlated to the roughness dimension (or asperity height)
on crack surfaces. When the asperity height is assumed to be relatively high compared to
the crack length, the closure stress intensity factors become a function of the crack length.
But if this is not the case, the closure stress intensity factors appear to be essentially
independent of the crack length. Also, an efficient method for estimating the experimental
closure load and stress intensity factor has been developed. The resulting data appeared to
correlate very well with analytical results. From these approaches it was demonstrated that
the closure stress intensity factors decrease monotonically rather than in a reversed-
exponential manner as the crack length increases.
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