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ABSTRACT

The analytic solution of equivalent stress range based on the power spectral density of
the stress in the critical position of structures or components and the statistical theory
of the stress peak distribution of a stationary Gaussian random process is deduced for
a quick fatigue life assessment under broad band random loading. The equivalent stress
range in the analytic solution can be calculated directly by frequency domain paramet:rs,
obviating the need for cycle-by-cycle counting and damage summation . The fatigue life
for structures or components under broad band random loading can be predicted quickly
by means of this solution with constant-amplitude S — N curve or da/dN - AK curve.
The model offers a great advantage when compared with any other existing approximate
models which are based on the stress peak distribution.

KEY WORDS

Analytic solution , equivalent stress range , fatigue life prediction , broad band random
loading

INTRODUCTION

Tatigue is onc of the most common causes of the in-service failure for components ~ad
structures. Most of structures are subjected to the Broad Band Random Luading(BBRL).
For fatigne life assessment under BBRL, the most convenient method is the statistical
analytic approach. For a stationary randem loading with Gaussian amplitude distri-
bution, the Probability Density Function (PDF) of stress peaks can be obtained by the
Power Speetral Density(PSD) of the stress in the eritical position of structures. From
the PDF | the equivalent stress range Si nnder BBRL is caleniated. By application of
experimental date(such as S — N curve, da/dN — AK curve, eic.), the fatigue life can
be predicted. Consequently, the Sy calculation is very important.

Through the PSD in the critical position of structures, some statistical qnantities

for fatigue assessment are obtained, which are showed in table 1 (Wirsching,1980; Chow
and Li,1991)
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Table | Definition and expression of statistical quantities

Definition expression
Kth moment of spectral density fuction G(f), My | [ f*G(f)df
Root-mean-square stress, o VM,
Expected rate of zero crossing with (4) slop, fo ,/M,/]\J_o
Expected rate of peaks, ng M.

' VMi/M,
Irregularity factor, « Jo/mo
spectral width parameter, € N

The PDT of stress peaks under BBRL can be expressed as(Rice,1955):

1 5L 1 2 2
p(0) = G (1~ ) eap [ (2071 = o))
+ 25 {1 + CTI(RF"_W)} ezp(%:;) (1)

where ¢ is stress peak and erf(z) is aror function. erf(z) is defi
" : ion. efined as erf(z) =
72?fn exp(—t*)dt. By putting & = as/(y20¢), Equation(1) can be simplified to ()

_ € Tyl . €z .
p(0) = Jgmemp =GP+ T [0+ enf(a) emp [-(57] 2)
According to the S — N curves or the Paris formula with the Palmgren-Minex

linear accumulation damage rule, the equivalent stress range under random loading can
be expressed as(Chow and Li,1991): -

Sp= [%__S‘%’"_n‘} s = [/ﬁm(mr)mp(s)du] 2 (3)

where AS; is sFrcss range for an individual cycle, n; is numbers of cycles corresponding
to AS; and m is material constant. Substituting Equation(2) into Equation(3) yields

4)

_ emt?  m+1 o m+2 .
Sh—2\/§a[5:/—1_rl"( 11 o Bl )+4\'Z]

where 55
2= [Ters@)(E)tenp [~ ()] a(E) (5)

and the I-function is defined as

I'(z) = Zf» y¥ lexp(—y®)dy
0

for x > 0.

Because Equation(5) contains the transcendental function erf(z), an exact solu-
tion is difficult to obtain. Many approximate models arc suggested, such as C]w:ud—
hury and Dover model(Chaudhury and Dover, 1985), Kam and Dover model(Kam -n.nd
Dover,1988), Chow and Li model{Chow and Li, 1991),etc., but every model has its short-
comings and suitable range. In this paper, the anvnlyt:i«:a.l solution of Equation (5) is
deduced, which completely solves the problem. This model has a greater advantage than
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that of any other model based on the stress peak distribution.

REVIEW OF APPROXIMATE MODELS

The model of Chandhury and Dover(CDM)

As the value of erf(z) falls between zero and one, erf(x) is assumed to be 0.5
in the Chandhury and Dover model, and Bquation(5) was changed as (Ohaundhury and
Dover,1985):

s e

It can be seen that the model is simplified by the use of 0.5 to replace erf(x) in
the integration range(0,c0) and inevitably causes certain error.

The model of Kam and Dover(KDM)

Kam and Dover modified the ODM. Equation(5) in the Kam and Dover model is
approximately expressed as(Kam and Dover,1988):

7= erf(@) [ (Eyean [P d(E) = Jers (AT )

Trom iterative calculation and fitting analysis, the error function erf(z) of Equa-
tion(7) can be approximately expressed as(Kam,1990):

m+ 2

—5 1

erf(z) = 0.3012a + 0.49160° + 0.91810° — 2.3534c" (8)
_3.33070® + 15.65240° — 10.784607

for o < 0.96 and erf(z) = 1.0 for o 2 0.96.

According to integration theory, the erf () can not be exciuded from the integra-
tion. Desides, as x = wa/(y/20¢), er f () is not only the function of o, but it also depends
on & and #. Calenlations show that the error increases as ¢ increases.

The model of Chow and Li(CLM)

C.L.Chow and D.L.Li obtained a series solution of equivalent stress range S by
using the series expression of er f(z). The series solution is as follows(Chow and Li,1001}:
A series expression by using to replace er[{ z) can be written as

0o 2kx2k<l-l

1) = Jzemr(==) 2 ok + 1y ®

=0
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Substituting Equation(9) into Bquation(5) yields

€t o T 2k +m+ 3
s - R, o 10
Nz Eﬁg (2 + 1)1 ( (1)

An alternative solution can be obtiined by using the asymptotic expansion

somi-een e ] o

This expansion leads to the following form for Z:

1.om+2, €™ m+1 et & (=1)f2k-1)" m-2k+1
= — - T -
Z=31(= ma 2 ) 2\/;;2 e

(12)

By numerical analysis, Chow anc Li turned the above two series into a single
solution, that is a united expression

,rn'.!

ki ghydkt1 '71.+m—1-3 .
2; Tk + 1)H ) (13)

for € > €;,and

1. m+2 emt  m 41, emt3 m—1
=5 ) sl )t immt ) (12)

for € < €y, in which €; and ky determined by a computer program.

In fact, Iy(z) and I3(z) can be uted to express erf(z) only 2 in a certain raage.
Therefore, it is not very satisfactory to simply replace erf(z) in Eqution(5), as in the
integration range of (0,00). Although the united formula can improve the accuracy of
the calculation, it still has some limitations.

Thus it is evident that all the approximate models suffer inaccuracy and limitation.

DERIVATION OF THE ANALYTICAL SOLUTION

Equation(5) can be transformed s follows

o [ ()] (%)

€x m+l

Z = / er f(z)( )

/0“’ {% /0 m(_v),u] (i;)”""‘cxp [—(%)’] )

AL [ 20
]
1

1 [ N (%)
L il

+—\/1—E/0mm(%)"'_'£[‘/; exp{—t )dl] u,p[ {%)2] dx
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+71_;r- fow (%f—)'"ca:p(-—z’)c::p [—(%—)’] dx
-2 [ [ e e [P ()
f (Eyme zp[ (2] de

m— i cx 3 4 1
= ——-/ erf(z :r le:r:p l—(-r'o—:f) } d(—w—) + ‘-‘){F——F(mj

o
By defining

1(m) = [~ erf(x)(%)”‘“exp [~y a)
Iom-2)= [ erf@)(E)" eap ()] a(Z)

the recurrence formula can be yielded, that is

Z:I(nl):%f{?ﬂ-?)‘i‘ —F(ln“t‘l')

2y

When m is an even number, Equation(18) becomes

mm— 2 2 m+41 mae"" m—1
A=y gt f” 2 )t )
mm—-2 4o 241
Fet g R O

LG

= (PO + 57 2 s

)

Using Equation(16) leads to

[T err@(Eyean [ (5] a)

5 [\/'f mp(—")‘“] (o [-(5])
(L eoptena] emp [T
4oz 7 vepla)esn [~ (57| de

f/m [ ]"’“

P>

Substituting Bquation(20) into Equation(19) yields

1(0)

I

m/3

_am o (% )17 ..k+1
_5(2)!+2ﬁk=, . A ()

)
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When m is odd number, from the recurrence formula(18), Z ecan be expressed as

mm— 2 m+1 m oe™

m—l
z=T02% 1(1)+ I‘( )+,,2\/— I( )

mm— 2 ‘E_Cf_,_p(a + 1)
Tty T 2k
(m+1)/2 k1
m!! o 2 1
P Tk 22
TI(1)+ 2\/‘ Z _____ ( ( ) ( )
From Equation(lﬁ), I(1) can be derived as
=2 7 cap(-2* [—‘—”]ud‘f— S 23
1= o [ [ ety |- () + 5700 (23)
By putting y = €2/, Equation (28) can Ve simlified to

1=z j f cap(~1?)exp(—y?)dtdy + fr(l) (24)

From integral transformation(sce Fig.1), I(1) becomes
y

o~ -

y = (eAt

¥

Figure 1: y — L curve

(1)

1 T kad 3 e
7.;[__['/’ d0./ﬂ exp(—r?)rdr + 2\/;I‘(].)

_T(1) (25)

=2\/‘[“_ G )] 2\/’

Substituting Equation(25) into Equation(22) yields
(m+1)/3 ok--1

ml! s _17€ aml! e

22\/7? 22ﬁk=l

Therefor the analytic solution of the equivalent stress range is

1T (k) (26)

1

sh—zﬁa[ Er —r('"+2)+uzr (27)

,)\/_I‘( 2

Analytic Solution for Fatigue Life Prediction 1351
where "
o .m 1 T2 3k 2k +1
= e —— 1 = BB (e N 28
z= 500 e 22 T )] (28)
as m is an even number and
ml) s € (mit)/2 gk-1
Z = . = == tg M= e k 29

as m is an odd number.

DISGUSSION

In one extreme case, at the Rayleigh peak distribution, which corresponds to € =
0{or o = 1), the results can be obtained from Equation (27)~(29) as

Sh = 2V2 [p(',"_f_z—)] (30)

At the Gaussian peak ditribution, that is for ¢ = 1(or « — 0), the solution can be
obtained from Equation(27) ~(29), which is

m+ 1
Sp=2 T — 31
=2 [ ’] e
According to the PDF of the Rayleigh ditribution and Gaussian distribution it has
been shown that(Chow and Li,1991) Equation(30) and (31) arc the correct solutions of
the two extreme cases respectively. So, the analytical solution is suitable to all casesle =
0~ 1).
Digital results of S, are showed in Fig.2, indicating that the S, has a very good
changing property. Therefore, when m is not an integer, a linear interpolation scheme
can be used to evalnate the Sy from the two nearest m values with integer m.

CONCLUSION

The paper deals with analytical solution for calenlating the equivalent.stress range
under wide band random loading and it is based on the stress peak distribution of a
stationary Gaussian process . The formula of the equivalent stress range is

s
1 2 m
S;.-')\/—a[ mth o™t )+aZ]

\/—(2,2 5

where

—()
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Figure 2: Si/e versus m

as m is an even numbel' and
(m+1)/3  ok—1
— 2

z ?;, (2k— 11

. ) =
_‘ZT#\/; 2 tg (a)+a 1T (k)

as m is an odd number.

The solution is valued for the cases(c = 0 ~ 1). The equivalent stress range can be cal-
culated by the frequent domain parameters (0, @, €) and the fatigue life can be predicted
by means of this solution. The model has a great advantage over any other approximaie
model which is based on the stress peak distribution.
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