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ABSTRACT

Most biaxial fatigue research has been conducted under proportional in-phase
loading. In service, many aircraft structures are subjected to cyclic biaxial out-of-
phase stress conditions. However, very little experimental work has been
undertaken to establish the effects of out-of-phase loading on fatigue properties of
materials and components. The aim of this paper is to present a simple high-fatigue
criterion suitable for multiaxial out-of-phase stress loading. Estimations are
compared with experimental results carried out on tension/bending-torsion
specimens. Analysis of the results shows a highly satisfactory correlation between
predictions and experimental data.
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INTRODUCTION

A vast number of high fatigue-criteria are given in the documentation available. A
criterion providing a general behaviour model must be consistent with the tendencies
observed through simple conventional tests.

It must be independent of the reference system linked to the structure, and be
consistent with Haigh diagrams under tension-compression and torsion. Several
criteria are in compliance with these conditions, e.g. those of Sines (1981),
Crossland (1956) or Dang Van (1973). These criteria give good estimations in the
case of in-phase loading (Papadopoulos, 1987). However, experience demonstrates
that they can not process out-of-phase loading. It is possible to formulate this
loading as follows :

Gij = Gijmoy + Gija); - sin((m-(xij)

where : Gjj component i,j of stress tensor,
Gijmoy Mean value of Gij,

Gijan maximum half-amplitude of Gij, cijah>0,

aij phase difference between the stresses Gij,

o frequency of loading

Phase difference between the stresses considerably reduces fatigue strength. Thus,
predictions are inclined to be over-optimistic and non conservative.
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The purpose of this paper is to present a criterion which could correctly integrate the

effect of out-of-phase loading. It is derived from Crossland formula : results are
identical in the case of in-phase loading.

INITIAL HIGH-FATIGUE CRITERION

The initial formula proposed by Crossland is expressed as a linear combination of
the equivalent shear stress amplitude and the maximum hydrostatic stress reached
during the cycle:

Teqa + BN.Pmax < AN

where:

Ay and By are positive constants defined for fatigue life N
Teqj the equivalent shear stress amplitude,

Pmax maximum hydrostatic stress.

Failure occurs when (Teqa+BN-Pmax) equals An.

Definition of Pmax.and Teq,
Hydrostatic stress p(t) equals a third of the trace of the stress tensor Z(t).

Expressed within the principal reference system, 3(t) is expressed on a single point
of the structure:

o) 0 0
(1) = 0 opg® O
0 0 om(t)

An iteration over time is used to define the instant in time corresponding to
maximum hydrostatic stress:

—

Prax = & maxtrace{ Z()}] = 3 max o0 +0u(+0m(®)]

For any periodic load, the point representing the stress tensor 3(t) describes a closed
curve (Cx) which represents a load trajectory.

For radial (or proportional) loads, the load trajectory is a line segment passing
through the origin. The principal axes of the stress tensor ¥(t) are fixed during the
cycle.

Simple Model to Predict Fatigue Strength 1381
In this case, the equivalent shear stress amplitude for a point on the structure is
expressed as:
1
Teqa=+V J2a where: I2.=5 [(Gla-Glla)2+(0'13‘0nla)2+(0na-0ma)2]
O1p= 1/2.(0’]max-01rnin)
1= 1/2.(Climax-Olimin)

og= 1/2.(Cumax-Cliimin)

Gly» Olgs Oly amplitude of principal stress o1(t), oy(t) and ot respectively.

In the most general case of periodical loads, the principal stress axes vary over time,
as the load is not proportional. Teqg is homogeneous at a distance in the hyperplane

of the deviatoric tensor.

The projection of the load trajectory (Cx) onto the hyperplane of the deviatoric tensor
is a closed curve (Cs) :
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Figure 1. Load trajectory (Cs).

Silo

; 1
Teqg is then expressed as: Teqa =73

D is the length of the biggest segment intercepting (Cs). It is calculated as follows:

D = max(ty o)\ trace([S(t1)-S(2)L{S(t1)-S(2)1)

100
where:  S(t) = Z(t)-p(t).1d 1d =[ 8 (1) (]) }
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MODIFICATION OF THE FATIGUE CRITERION

Considering an out-of-phase tension-bending and torsion stress load, stress tensor
Z(t) is formulated as follows :

c11() oy 0
0= o) 0 O
0 0 0

where : G11(t) = Glimgy + Ollgy- SIn(®)
012(t) = O12oy + Cl2q1- sin(wt-o)

In the stress space, ppint M representing stress tensor Z(t) is revealed as a closed
curve which is an ellipse. The projection of this ellipse in the deviatoric plane also
results in an ellipse of long segment D/2 and short segment d/2.

ot + 3.7/2

ot + /2
Figure 2. Projection of the load trajectory in the deviatoric plane

D et d are calculated with the following forms : D = max(t) p(wt)
d = min(t) p(wt)
with pn =Y trace([S()-S(t+m)].[S(1)-S(t+T)])

The deviatoric tensor is defined by the following relation :  S(t) = Z(t) - p.Id

with p= ‘l;(—‘—)

Sy Sy 0 2
S() =[ S](z)(l) 52(2)(1) 0 ] where : Sy1(t) = 3 Ollmoy + % O1ly) - Sin(wt)
S22(0)
2 Soa(t) = S33(t) = - % S1i(v)

S12(t) = C12moy + O12ay - sin(mt-o.)
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R
\p(wl) = 402301102 sin?(ot) +2.01 1g12-sin2(0t-0) +2.(1/3.0 1) 2-sinZ(ot)]

The maximum or the minimum of p(®t) is obtained expressing the relation :

4 [p(n1=0

sin(@t*).cos(@t).[(2/3.6113)2.+2-(13.6119)?]+2.01 1212 sin(ot*-0).cos(wt*-0)=0

1 2.012y,%-5in(2.00)
ot = zarctan [ ——
2/3.61 13, 2+2.0124%-c08(2.01)

t* Wt +10/2
Long segment D/2 is equal to the maximum of the two terms e 5 ) and &—24
short segment d/2 corresponds to the minimum.

In Crossland's original formula, only D is used in the calculation of the equivalent
shear stress amplitude.

In order to take into account the totality of the phase difference (characterized by D
and d), it is judicious to replace D by the half-perimeter of the ellipse : pe/2.

/12
Teqy is therefore formulated : | Teqa = 15 Pg\j__i_

Cpe mD#d o 1,o 1ag 1 g6 _Dd
where: 5" =73 3 [1+4)‘+647‘+256;”] and X—D+d

In the case of in-phase loading, pe/2 is equal to D.

For out-of-phase tension-bending and torsion stress load, maximum hydrostatic

1
stress becomes : | Pmax = 3—(011m0y+0'1|a“)

DEFINITION OF CONSTANTS AN AND BN

The two constants can be defined by means of two simple uniaxial tests. The tests
selected are generally an alternating tension test (mean Stress equal to zero) on an
unnotched test specimen and an alternating torsion test on a thin tube.
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Figure 3. Test specimens.
By applying Crossland's formula to both these tests, the result is :

- for the alternating tension test:

%la AN- BN.(———Y———GI‘“" gl

\3 3
op, < ——\F— (AN - B3—N CImoy)
1+\/—_3.BN
On failure: 6-1(N) = —I\B— AN
1+—\/:_5.BN

6-1(N) is the maximum stress corresponding to failure at N cycles for the alternating
tension test.

- for the alternating torsion test :  ©12,< AN
On failure: T-1(N) = AN
T-1(N) is the maximum stress correspording to failure at N cycles for the alternating

torsion test. T.1(N) is independent of a mean torsion value (in conformity with
experimental observations).

i) 1
o-1N) V3

hence: AN =1-1(N) and By =3.(
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o-1(N)
T-1(N

Positive By implies that < 3. This is verified for the materials used in
aeronautics.

Crossland's formula is finally expressed as:

iN) 1
Teg, + 3. =l <T-1(N
eqa (c—l(N) @) Pmax < T-1(N)
APPLICATIONS

The experimental data presented in this paper originate from scientific literature.
These data concern bending-torsion tests (Froustey and Lasserre, 1989) and tension-
torsion tests (Mielke, 1980).

For the results of each test, the calculation of the K ratio ( K = (Teqa+BN-PmaX) /

An ) enable the quality of the predictions to be appreciate. If K is equal to 1, the
prediction is perfect. If it is higher, the prediction is conservative.

Error is quantified as follows : I=(K-1)*100.

Table 1. Test results and predictions with out-of-phase tension-torsion stress condition.

Material : CK45, Out-of-phase Tension-Torsion, Life to failure : 105 cycles
7.1=287 MPa, 6.1=423 MPa, 60=712 MPa

Initial Initial Modified | Modified
Ollmoy | Cllalt G12moy | ©12alt o L S AR A

criterion | criterion | criterion criterion
(MPa) (MPa) (MPa) (MPa) K 1% K 1%
250 250 0 144 90° 0,68 -32 0,97 -3
0 288 165 165 90° 0,68 -32 1,01 1
0 292 0 167 60° 0,76 -24 0,95 -5
0 304 0 174 90° 0,72 -28 1,06 6

The error never exceeds the value £10% and for most of the data this value is less
than +5%. The calculation method provides excellent correlation with test results.
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Table 2. Test results and predictions with ou-of-phase bending-torsion stress condition.

Material : 30NCD16, Out-of-phase Bending-Torsion, Life to failure : 10% cycles

1.1=415 MPa, 6-1=695 MPa, 60=1040 MPa
Gllimoy | Ollai C12moy | O12al [+3 In}tla! Initial Mpd1_f1ed Mpdx_f:ed
(MPa) | (MPa) (MPa) (MPa) criterion | criterion | criterion | criterion

K 1% K 1%

0 480 0 277 90° 0,69 31 1,07 7
300 222 0 385 90° 0,95 -5 1,06 6
300 480 0 277 45° 0,85’ -15 1 0
300 470 0 271 60° 0,77 -33 0,99 -1
300 473 0 273 90° 0,69 -31 1,07 7
300 565 0 141 45° 0,86 -24 0,93 -7
300 540 0 135 90° 0,79 -21 0,92 -8
300 465 200 269 90° 0,68 -32 1,05 5
450 405 0 234 90° 0,60 -40 0,93 -7
600 390 0 225 90° 0,59 -61 0.90 -10
CONCLUSION

A simple high-cycle fatigue criterion has been presented in this work. It is suitable
for in-phase and out-of-phase corditions. Implementation of this criterion is
extremely simple and requires no spezial numeric calculations.
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