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ABSTRACT

Some of the Japanese fossil fuel firing power plants have been operating for more
than two hundred thousand hours, and several different kinds of damage have been
observed, so that the assessment of residual service life of these aged components
has become an important issue. This paper discusses, of a number of assessment
techniques being developed at IHI, three major ones. They are:

1. Creep-fatigue damage assessment based on the behavior of microcracks;

2. Creep damage assessment in the early stage based on changes in the chemical
composition of carbides; and

3. Nondestructive assessment of creep residual life for heating tubes and linepipes
based on creep strain and strain rate, called the omega () method.

INTRODUCTION

Since the residual life assessment became mandatory for the plant diagnosis of
aged thermal power stations in 1987 as a formal requisite for extending the regular
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inspection intervals, several such assessments have been conducted for each of the

ertinent plants. Although no serious damages have actually been found by those
Inspection works, it is true that several kinds of damages that hitherto remained
unobserved have begun to make appearances in those plants that are kept
operating beyond two hundred thousand hours®. We consider this to be sufficient
warning to continue the rational residual life assessment even though the
mandated assessment has been alleviated in 1995.

In short, the current R&D on the residual life assessment can be stated as directed
three ways: one, to develop novel measurement technologies to evaluate the new
kind of damage that has escaped quantitative detection; second, to improve the
accuracy and precision of the current practices; and third, to cut down the cost of
assessment work by devising means of labor-saving and automation. Table 1
presents, as an example, the activities we are undertaking at IHI for furthering our
own capabilities of the residual life assessment for components of power plants.

This paper describes the first three items in the table, i.e., first, the method of
quantitatively assessing the creep fatigue damage by the propagation behavior of
microcracks; then, the second, the method of quantitatively evaluating the early
stage creep damage from the composition changes in precipitated carbides; and the
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Application to Actual Boiler Components

We have examined several components of a certain operating power boiler for their
states of creep fatigue damage. Figure 4 presents three pieces as an example
together with the points of examination. In the figure, (a) is a header stub, where
the toes of the fillet welding between the heating tube and the header were
examined. As the heating tube is less rigid compared to the header proper, the
HAZ along the weld toe is liable to produce damage as stress tends to concentrate
there. In (b) is shown a Y piece ofP the main steam pipe, which comprises three
linepipes circumferentially welded to the central Y-shaped forged steel piece.
Here, each HAZ is damage-prone because of the bending stresses that are given
rise to by the reaction forces of the linepipes and are concentrated there. Finally,
() is a linepipe nozzle stub where two linepipes are mutually fillet welded so that
the HAZ’s at the weld toes are liable to damage because of concentration of bending

stress.

Results of metallography conducted on these sHecimens are illustrated in Fig. 5. In
(a), which is the heatfer stub’s weld toe, small cracks of 1mm or so long are seen
along the grain boundaries in the HAZ grain-coarsened region. In (b), which was
taken of the main steam pipe Y piece, there are numerous voids seen existing
together with microcracks. SEM inspection showed, confirming the observation
stated regarding Fig. 1, that these cracks were not of voids as they were linked
together but were those that were initiated at the voids. Finally, in (c), which
shows a HAZ part of linepipe nozzle stub, there are microcracks in the grain-
coarsened region, and voids in the grain-refined region.

Now, the progress of creep fatigue damage occurring in the linepipe nozzle stub was
analyzed with the regression line of Fig. 3(b) as a working curve. The result is
presented in Fig. 6. In the figure, Cracks A. B, and C denotes the cracks that are
seen in Fig. 5(c). Asthe Crack C is the longest of all, we read off the working curve
for the relative creep fatigue life N/N¢ to be 0.8, and conclude that 80% of the life of
this structural piece has been expended.

THE METHOD OF QUANTITATIVELY EVALUATING THE EARLY STAGE
CREEP DAMAGE FROM THE COMPOSITION CHANGES IN PRECIPITATED

CARBIDES
Background

As illustrated in Fig. 7, there have been two ways to evaluate the creep damage
occurring in 2.25Cr-1Mo steel: because deterioration of HAZ is mainly by forming
voids, the current practice is to take the void area as a damage parameter, whereas
the damage parameter for the base metal, which deforms plastically, is the
granular elongation. The trouble with these methods that rely on the detection of
mechanical damage is that their capacity of detecting damage is limited only to the
latter half of material’s useful life, i.e., over 0.4 and over 0.5 respectively in Fig, 7
in the cumulative creep damage rate. Even though we would concur to the opinion
that, for the members with a designed service life over 200,000h, it should be
sufficient if the damage is assessed in the latter half of the intended lifetime, we
take exception to this view here because neither method is precise enough to
warrant safety.

For this purpose, we have found that metallurgical damage, as against the
mechanical damage discussed above, can be detected in terms of microstructural
changes early in the creep life. Particularly, we have found that carbides alter
their form and composition with accumulation of damage, ultimately affording a
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terms of the granular deformation for the base metal part and the void area rate for
the HAZ.

The omega (Q) method of residual life prediction we are going to propose in this
section is to improve the granular deformation method.

Principles

It is well known that the theta (6) method and the omega (() method are available
to express the creep deformation rationally. We have found that either method can
be modified to evaluate the remaining life, and that the O method, whose principle
is presented in Fig. 11, is simpler than the § method.

Namely, a creep curve, which is perceived customarily as consisting of three parts
of the primary, the secondary, and the tertiary creep parts, as shown in the upper
diagram of Fig. 11, can be replotted in terms of the logarithm of the creep strain
rate (In ¢) and creep strain (¢) to reveal the importance of the tertiary creep stage,
as shown in the lower diagram. The Q value is simply the gradient of the tertiary
creep stage as represented by equation (1) in the figure. It can be shown that eq. (1)
can further be transformed into eq. (4), which allows one to calculate the remaining
life by determining the actual ¢, provided that the Q value is known for the
prevailing temperature and stress.

The verification of this theory was done by conducting creep tests on Mod.9Cr-1Mo
steel at 500, 550, and 600°C.” Figure 12 presents the 600°C test results in terms of
the In ¢ vs ¢ plots with the applied stress as the parameter. The presence of long
enough linear tertiary creep stage is evident. The Q values determined from these
plots are shown in Fig. 13 together with 500°C and 550°C test data. As might be
expected, the Q value depends on both the stress and temperature, such that it
tends to be the higher, the lower the stress and temperature.

Figure 14 shows the remaining life as calculated on eq. (4) for the remaining life
rates t/ty of 0.1, 0.5, and 0.8, and as plotted against the actual rupture time. It will
be noted here that the predictions done at remaining life rates of 0.5 and 0.8 are
accurate enough. Inasmuch as the life expectancies of the components of actual
boilers are generally over 200,000h, the ability of making reliable predictions at a
remaining life rate of 0.5 should be considered quite satis: actory.

Proposition of Application to Operating Components

The O method of remaining life prediction can be applied to the continuous
nondestructive surveillance in a number of ways. Figure 15 shows some examples.
For example, by establishing a pair of gauge points on a heating tube or a linepipe,
and by measuring its outer diameter at regular intervals, the creep rate can be
determined accurately and with ease.

In the meantime, however, the QO value must be acquired empirically. An
important point of accumulating Q values may be that, as inter- or extrapolation of

ertinent () value for the operating temperature and stress will be inevitable, the
?actors that exert major influences on the Q value should be quantitatively
determined. Also, it may be necessary that the heat-by-heat variation even for the
same grade of steel should be accounted for as is often the case.

CONCLUSIONS
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Features
Of the voids and the microcracks (<1mm),
the maxzimum crack length can be related to
the creep fatigue life expenditure.
The Mo/Cr mass ratio of carbide changes
sensitively following early stage creep
The residual life can be accurately assessed
from the Q value, which is the gradient of
the tertiary creep stage in In ¢ vs ¢ plot.
Quasi-nondestructive method in which a
small sample is used for TEM examination.
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The corrosion taking place during steady
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the plant are satisfactorily simulated.
Development of fracture mechanics method
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development fracture mechanics method of
assessing the residual life. (in progress)
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1H: weld heat affected zone (HAZ); M: base metal.
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Fig.4 Evaluated components and observed positions.
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Fig.3 Calibration curves of creep-fatigue damage for
2.25Cr-1Mo HAZ and Modified 9Cr-1Mo steel.
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Flg.2 Comparison of small cracks under creep-fatigue
with those under fatigue for 2.25Cr-1Mo HAZ.
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Fig.5 Optical and SEM micrographs showing small cracks and voids.
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