LINKING SCALES IN FRACTURE MECHANICS

John W. Hutchinson
Division of Engineering and Applied Sciences, Harvard University
Cambridge, MA 02138, USA

ABSTRACT

A overview is given of fracture mechanics models which incorporate a description of the near—tip
fracture process. Emphasis is on applications to metals and interfaces between metals and ceram-
ics where plastic flow makes a substantial contribution to toughness and crack growth resistance.
Important scaling distinctions emerge between computational models for fracture taking place by
void nucleation, growth and coalescence and those characterizing cleavage or decohesion.
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1. INTRODUCTION

Linking the macroscopic scale to the microscopic scale to gain basic understanding and quantita-
tive models of fracture properties goes back to the earliest days of fracture mechanics, as exempli-
fied by Griffith’s work on the fracture of glass. Nevertheless, much of the great success of fracture
mechanics as an engineering subject rests on tests, as opposed to models at the microscopic scale,
to obtain essential fracture properties such as toughness, crack growth resistance, and fatigue crack
growth rates. Linear elastic fracture mechanics (LEFM) provides a framework for taking material
data from test specimens to assess the residual strength or load cycles to failure of a cracked struc-
ture or component. The central idea underlying LEFM is Irwin’s notion of an autonomous region
at the crack tip characterized by the elastic stress intensity factor and subsuming all nonlinear
behavior, including the fracture process. In LEFM, details of the exterior geometry and loading
are felt only through the history of the stress intensity factor, K . LEFM breaks down and nonlinear
fracture mechanics comes into its own when zone of nonlinearity ceases to be contained within
the K—field. This can happen when the fracture process zone itself becomes too large, as in the case
of extensive micro—cracking at a macroscopic crack in a polycrystalline ceramic, or it can result
when the fracture process zone remains small but the surrounding plastic zone becomes large. This
latter situation, labeled large scale yielding in elastic—plastic fracture mechanics, has received con-
siderable attention over the past several decades, with mixed success.

Until recently, the main approach to extending LEFM into the large scale yielding regime
has been to use elastic—plastic crack solutions and to invoke an autonomous zone at the crack tip
controlled by the J—-integral. This is the natural extension of Irwin’s idea for LEFM, requiring the
fracture process zone to be embedded within a crack tip field uniquely characterized by J. While
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this approach can be used under restricted conditions and it has had some notable successes, its
Himitations are equally apparent and have been well exposed in the technical literature (e.g.,
Hruberg, 1995). Even for the initiation of growth of stationary cracks, the notion of a near-tip field

uniquely tied to 1 breaks down because of the strong influence of outer geometry and loading
conditions on the level of hydrostatic tension at the tip. Hydrostatic tension has a significant influ-
ence on fiacture initiation, whether the process be the ductile mechanism of void nucleation,
growth and coalescence or cleavage. The absence of a unique characterizing parameter for the
cruck tip field carries over to the description of crack growth resistance. Moreover, the J—integral
is based on a deformation theory formulation of plasticity which is not applicable if extensive
amounts of crack growth take place. While further progress and understanding has been achieved
on the basis of a two—parameter crack tip mechanics (Hancock ef al., 1993), it has been apparent
for some time that the fracture process must be directly incorporated into the mechanics if it is to
be widely applicable to tough, ductile structural metals.

A nonlinear fracture mechanics for ductile fracture under small or large scale yielding has
recently emerged based on computational formulations which embed a model of the fracture pro-
cess within an outer continuum elastic—plastic description. These formulations permit direct cal-
culation of crack initiation and advance. The inputs to the models are microstructural parameters
such as void nucleation strains, volume fraction of void nucleating particles, etc. In practice, the
choice of these parameters is made to reproduce one or more sets of specimen test records for the
material in question. In this sense, calibration of the models is intended to remain strongly tied to
test data, as has exemplified engineering fracture mechanics from its beginnings. The new nonlin-
ear fracture mechanics has been made possible by the development and verification of mechanisti-
cally—based models of void growth, on the one hand, and by the increases in computational power
made widely available in recent years. It has become feasible to routinely perform computations
which span the scale from the structure or component (on the order of a meter) down to the scale
of the void growth fracture process (on the order of tens of microns). The development of computa-
tional models for ductile fracture was first pursued in France (Rousselier, 1987; Rousselier ef al.,
1989) and with paralleling work in England (Bilby et al., 1993; Li et al., 1994), Denmark (Tver-
gaard and Needleman, 1984), Germany (Brocks ef al., 1995; Sun et al., 1992): and the United
States (Needleman and Tvergaard, 1987; Shih and Xia, 1995; Xia and Shih, 1995; Xia et al.,
1995). An illustration of the predictive capability of the models will be given later in this article.

The scale of the void growth fracture process for most structural metals lies within the range,
typically, from several microns to as much as one hundred microns. By contrast, when the process
is atomic cleavage or decohesion of a metal/ceramic interface, the scale of the fracture process is
on the order of angstroms. The fracture of interfaces is currently of considerable interest in the
physics community where computations of interface separation energies using atomistic methods
are being extended and refined. There is also considerable technological interest in metal/ceramic
interfaces, and extensions of linear and nonlinear fracture mechanics applicable to such systems
have been developed. Efforts to link the atomistic results to macroscopic fracture measures such
as interface toughness requires that scales on the order of angstroms to centimeters be spanned.
The expanded scale introduces two challenges not encountered in modeling fracture controlled by
the void growth process. One is simply the computational difficulty of spanning the extreme range
of scales. The second, which will be highlighted here, is the inadequacy of conventional continuum
plasticity at scales below several microns. The atomic decohesion process is “screened” from the
applied loads by plasticity. As has long been appreciated, plasticity contributes mightily to the
macroscopic toughness of strong interfaces.

This overview is organized to bring out the some of the progress and challenges involved
in linking to the fracture process from the macroscopic scale. The viewpoint is of one who has been
motivated primarily to develop fracture mechanics for engineering applications. In other words,
this article puts the main emphasis on crossing the bridge from the macroscopic side of gulf, rather
that the other way around. Section 2 discusses a generic model which employs an embedded trac-
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tion—separation law to characterize local material failure. The model is used to bring out some of
the issues mentioned above for the two major fracture processes, void growth and atomic decohe-
sion. Section 3 reviews the new fracture mechanics for ductile structural metals. Section 4
addresses problems alluded to above when the fracture process occurs at the atomic scale. Specifi-
cally, the importance of establishing the link through the scales is discussed, and recent attempts
to extend the characterization of crack tip fields to smaller scales using new plasticity models will
be reviewed.

2. EMBEDDED PROCESS ZONE (EPZ) MODEL

The EPZ model for mode I, plane strain cracks (Tvergaard and Hutchinson, 1992) anticipates that
crack growth will occur as an extension of the existing crack plane and employs a traction—separa-
tion relation as a internal boundary condition along the extended crack plane to model the fracture
process. The separation law, 6(8) , which is shown in Fig. 1, is char:icterized by the work of sepa-
ration per unit area, Iy = ‘0(8)ds , the peak separation stress, O, and shape factors, }»1 and
A, , which are of secondary importance. The material off the extended crack plane is taken to be
a conventional elastic—plastic solid. For the case of an isotropic elastic—plastic solid, the J, flow
theory is used which is specified by the elastic Young’s modulus and Poisson’s ratio, E and v,
the tensile yield stress, Oy , and the strain hardening index, N (with N = 0 coinciding with an
elastic—perfectly plastic solid). The separation & is identified with the displacement jump across
the extended crack plane.

Initial unloaded
crack

At initiation of
growth

4 During
| 5, growth
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Figure 1. Traction—separation law of the fracture process and details at the crack tip.
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Initiation of growth is identified with attainment of 8. at the tip, and the tip is advanced
when conditions are such that 8 is maintained at .. No further conditions need be specified.
The length L of the fracture process zone at any stage of loading is not known but must be deter-
mined as part of the solution process. The model is computationally intensive in that predictions
require a finite element representation of the solid, finely meshed in the crack tip region. Applied
loads and external geometry are represented in the usual manner. In general, there is no distinction
between large and small scale yielding, however, small scale yielding is readily modeled if the
outer elastic field is prescribed to be the classical K—field. The interaction between the fracture
process and the surrounding plastic zone is the essential feature captured by the model. This inter-
action is exceptionally nonlinear, as will be brought out in the sequel. It is intended that the model
be generic in that it sheds light on more that one fracture process. Indeed, it will be seen that work
of the fracture process I’y is typically on the order of thousands of Joules when the fracture mecha-
nism is void growth, while it is on the order of one Joule when atomic decohesion governs.
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Assuining the loading is monotonic prior to initiation of crack growth, the plastic deforma-
tiadi will be nearly proportional and a deformation theory representation is a good approximation.
The J-integral is path-independent, and its application to initiation of growth when the condition
& = &, is first attained at the tipgives J =T o - Thus, according to the model, the work of the
fructure process is also the critical value of J corresponding to initiation.

Consider application of the model to small scale yielding conditions where the crack can be
regarded as being semi-infinite and the remote field is specified to be the K—field. Let
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be the measure of the applied loading such that for integration contours in the elastic region sur-
rounding the plastic zone, J = I'. Following Tvergaard and Hutchinson, define a reference plas-
tic zone size by
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This length quantity can be interpreted as an estimate of the half-height of the plane strain plastic
zone ifthe applied loading satisfies I = T’ o - Computed curves of I'/T', versus normalized crack
advance, Aa/R,, are shown in Fig. 2 for a set of representative nondimensional material parame-
ters. As already noted, initiation occurs when I' = Ty . If the ratio of peak separation stress to
tensile yield stress, 6/ Oy, is less than about 2.5, no crack growth resistance occurs, and the crack
advances at the level specified by the work of the fracture process. In this case, the separation stress
is not large enough to induce a significant plastic zone, and plasticity makes almost no contribution
to the macroscopic toughness. Plasticity makes an increasing contribution to the work of fracture
for values of 6/(1Y above 2.5. The larger is G/ Oy , the greater the crack growth resistance and
the larger the ratio of the steady—state toughness to the work of the fracture process, I's/T.
Steady—state conditions are well defined in small scale yielding: the crack advances under constant
remote I with 8 = &, maintained at the tip in such a way that all behavior appears unchanging
to an observer moving with the tip.

Computed curves of I'ss/T’ o as afunction of G/ Oy for three values of the strain hardening
index, N, are given in Fig. 3. From dimensional considerations, one can assert
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Figure 2. Crack growth resistance curves in small scale yielding from Tvergaard and Hutchinson (1992). (N = 0.1,
A =015, %, =05, oy/E = 0.003) .
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but dependence on all but G/ Oy and N is relatively unimportant. The plasticity f:ontrib.ution to
the total work of fracture is reflected by the extent to which I'ss exceeds I'y , which is considerable
when 6/ Oy becomes sufficiently large. Indeed, the contribution of plastic dissipation in the plas-
tic zone to macroscopic work of fracture can be many times the work of the fracture process, yet,
by (3), I'ss nevertheless scales with I, . Nonlinear amplification of the vyork of the fracture pro-
cess by the plasticity zone is made explicit by the model, and is evident in the trends of Fig. 3.
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Figure 3. Ratio of macroscopic steady—state toughness to work of the fracture process from Tvergaard and Hutchinson
(1992). (A, = 0.15, A, = 0.5, oy/E = 0.003).
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Figure 4. Normalized length of the fracture process zone in steady—state growth from Tvergaard and Hutchinson
(1992). (A, = 0.15, A, = 0.5, oy/E = 0.003).

The computed length of the fracture process zone in steady—state growth,. L, is plotted in
Fig. 4 as Lg/R, . The process zone length is taken as the distance from the tip wherc? 8 =94,
to the point where the peak stress is first attained at & = A,8. . The plastic zone half-height, Rp,
is given approximately by R, = (F s/ I‘O)RO , and thus it can be seen that Lg/R,, drops sharply
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T, wErmases Hi ;iw!g (1995) has su ggested that the ratio, B = Rp/Ls;, is a good measure
#® £8ieni 1o which the fracture process is embedded within the surrounding plastic zone and
#egowe 1o which plastic dissipation is expected to contribute to the total work of fracture. The

eger ix B, the greater the plasticity contribution to toughness relative to that from the fracture
fromdny

3. CRACK GROWTH MODELS FOR THE MECHANISM OF VOID GROWTH

The EPZ model can be specialized to the case where the fracture mechanism is void nucleation
growth and coalescence, as has been done by Tvergaard and Hutchinson (1992, 1994, 1996). Tc;
do so requires that the parameters characterizing the traction-separation law, 6 and T, must
be rellated to parameters of the actual fracture process, such as nucleation strain, initial void%élume
fracnpn, fy , and void spacing D . This can be done with the aid of a micro-mechanical model
of void _growth such as that due to Gurson (1977). The ratio 6/0Y is a strong function of f,
decre.asu_lg as fj increases. The work of the fracture process required to separate a localized plar(;é
of voids is relatively independent of fy, depending primarily on the thickness of the band, which
scales with D . To a reasonable approximation (see full details in cited papers), it is found that
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Figure 5. Ra[.io of the total work of fracture in steady—state to the work of the fracture process when void growth and
coalescence is the fracture mechanism. (From Tvergaard and Hutchinson, 1996).

T.he outcome of this specialization is shown in Fig. 5, where the results from Fig. 3 are replotted
directly in terms of f, for the case where voids are present in the undeformed material. The total
v_vork of fracture of a tough material (fo < 0.005) will largely be due to the dissipation in the plas-
tl.C zone §urrounding the plane of localized and coalescing voids. Note that substantial plastic dis-
sipation is involved in the fracture processitself, as is evident from (4). Indeed, typical values from
_(4) for I'y would fall in the range from 1KJoule to 100KJoule, with plastic deformation constitut-
ing a large part of the work of the fracture process.

To be valid, the specialization requires that the predicted length of the fracture process zone
L, be large compared to the spacing between the voids, D . Thisis a consistency condition dictateci
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by the fact that the computation of & and T o interms of f, assumes the fracture process is a
localized plane of voids ahead of the tip. Consistency breaks down for levels of T'gs/ T, above
about 10, as indicated in Fig. 5. In this range, the model predicts that L is on the order of D sug-
gesting that crack tip advances “void to void” rather than by inducing a localized plane of interact-
ing voids strung out ahead of the tip. Thus, there are two distinct regimes governing ductile frac-
ture. The EPZ model is not valid in the “void to void” regime, at least as it is formulated above.
The new models for ductile fracture mentioned in the Introduction encompass both regimes
because they incorporate voids as discrete entities. These are now discussed.

The new models (c.f. references cited in the Introduction) have been developed as tools for
engineering fracture analysis, with provisions for calibration against test data for specific materials
under prescribed environmental conditions. All of the models are formulated within a finite ele-
ment finite element framework, employing special void—containing elements ahead of the crack
tip. For mode I, the plane of crack growth has been anticipated to be the extended plane of the crack
in most of the formulations pursued to date, but this restriction can be lifted (Needleman and Tver-
gaard, 1987). The models assume the voids are discrete entities with absolute size and spacing.
Equivalently, void size and spacing can be specified by void volume fraction, f, and spacing, D,
and these will be two of the fracture process parameters used in the present discussion. In nearly
all the model formulations, one void per element is assumed such that the element size is directly
tiedto D . Only within recent years has computing power been sufficient to allow routine calcula-
tions where, to link scales, the mesh size at the crack tip is on the order of 10 to 100 microns while
outer boundary dimensions are on the order of 1 to 10 centimeters.

Void damage in the elements ahead of the crack tip evolves according to specified rules
which characterize the local multi—axial constitutive relation. It is the parameter set of this consti-
tutive relation which must be calibrated against actual fracture data to produce a quantitatively reli-
able crack growth model. Two constitutive relations based on void growth have been used for the
embedded damage elements. The Rousselier Model (Rousselier, 1987) has been employed in the
model used by the French and English groups, while the Gurson Model (1977) has been employed
in the other crack growth models. Both models employ an initial void volume fraction, fy . and
D as primary parameters, along with additional parameters such as strains characterizing void
nucleation and void coalescence.

In the work on specific materials carried out by the French and English researchers, initial
values of the damage parameters have been chosen such that the model reproduces fracture data
taken on notched bars designed to cover a range of stress triaxialities. To some extent, the parame-
ters have alsc been directly related to miciostructural features such as the size and spacing of void
nucleating particles. The validity of the crack growth model has been demonstrated by employing
it to predict crack growth histories and associated load—deflection behavior of a variety of fracture
specimen of the same material.

The approach of the German and American work parallels that of the French in most
respects. However, instead of using notch bar data to calibrate the damage elements, these workers
choose f, D and other parameters such that their models fit crack growth data taken from labora-
tory test specimens. While perhaps not as fundamental, this approach has the merits of calibrating
against data representative of the intended application of the model. In any case, either approach
is feasible for both sets of models.

Much of the motivation for the development of these new models has come from the nuclear
power industry where problems related to cracking of pressure vessels and piping remain in need
of further clarification and quantification. In several of these problems, such as the thermal shock
of a reactor pressure vessel, the thickness of the section leads to a cracking problem which falls
within the category of small scale yielding, or, perhaps, intermediate scale yielding. However,
residual strength assessment requires consideration of reasonably large amounts of crack growth,
well beyond what can be obtained from laboratory test specimens. Moreover, resistance curve data
taken from laboratory specimens is invariably large scale yielding data, and therefore crack tip
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. The new qucls have been applied to several large scale problems from the power industry,
gxiz:lvﬂf nsome of the references listed in the Introduction. Here, we will illustrate their applicatior;
ix; p[n:{ll;;:(; ;?cldszlen;ience of crack growth behavior on size and geometry of test specimens (Xia
etal., ). In all of the examples, the ituti izi i
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rom (4). and (5). Based on the lower curve in Fig. 6, I'ss/T, is about 8). The smaller specimens,
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using J resistance curve data is disturbing in that it suggests that data taken from small specimens
which is applied to predict the behavior of larger components will overestimate resistance to crack
advance.

The effect of different geometries is shown in Fig. 7, again for the material specified by (5).
The five geometries are compact tension (CT), three—point bend (TPB), single edge—notched ten-
sion (SENT), double edge-notched tension (DENT), and center cracked panel (CCP). The full
range of crack tip triaxiality is generated by specimens of these geometries, from highest (CT)
which is thought to be close to that for small scale yielding to lowest (CCP). The width W (or
half-width for the DENT and CCP) of each specimen is the same (W = 5.08 cm) , and the initial
crack length (or half—crack length for the CCP) is chosen such that ay/W = 0.6 . The J-integral
is again evaluated on a contour remote from the crack tip. Each specimen is well into the large scale
yielding range once crack growth is underway. The associated load—deflection curves reach a max-
imum after about 1 to 2 mm of crack growth, depending on the particular specimen. The strong
dependence on specimen geometry displayed in Fig. 7 replicated experimental trends quite faith-
fully (Xia et al., 1995). Similar trends have been computed by each of the groups with their respec-

tive models.

1000
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500

Aa (mm)

Figure 7. Crack growth resistance for different specimen geometries for specimens of nominally the same size
(W = 5.08 cm) made of a material specified by (5) (from Xia et al., 1995).

The new computational models for ductile fracture which incorporate damage elements
appear most promising. The collective efforts of the several groups in various countries involved
in developing models of this class have already established a convincing case for their predictive
power and for their potential as an engineering tool. Extensions to cope with crack advance out
of the initial crack plane are possible but will require considerable additional work. The effect of
shear localization, which becomes increasingly important in very high strength steels, will be par-
ticularly challenging. One important application which appears feasible without major innovation
is the three dimensional problem of an elliptical surface crack in a think plate undergoing combina-
tions of bending and stretching. This problem would be a good test for the models because stress
triaxiality varies along the crack front, producing crack shape changes as the crack advances.



Hutchinson

L HALLENGUES FACING THE DEVELOPMENT OF CRACK GROWTH MODELS
L BECOHESION AT THE ATOMIC SCALE

iﬁéﬁggﬁ cracking in structural steels ultimately involves separation across cleavage planes at the
#tssiinie scale, but this scale does not appear to control macroscopic cracking. Initiation of cleavage
in a structural steel is usually triggered by an event on the scale of brittle second phase particlis
{!ypicuﬁy. microns to tens of microns). The brittle particles crack thereby nucleating runnin,
microcracks which coalesce with the main crack producing extension. The macroscopic cleava, i
tou gh‘ncs.s of arelatively tough steel can be on the order of several KJ/m?2. Plasticity makes a huge
conmbut.lo.n tq the toughness since the atomistic work of cleavage of the lattice in the absence if
any ;.)lasFlcl‘ty is only on the order of one J/m?.In a polycrystalline structural steel part of the
plastfc dissipation arises in the plastic zone surrounding the tip, and another part resu’lts from the
plastic dcforx.nation involved in tearing uncleaved ligaments bridging the two fracture surfaces
The scale which seems to control macroscopic cleavage cracking of structural steels is thus on the'
order of the_spacing between second phase particles and the grain size. Computational engineerin
models for initiation, growth and arrest which link to these scales are not as far advanced h g
for the void growth mechanism. e
.In this overview, we will focus on systems where macroscopic fracture is controlled at the
atO@c level. Specifically, we will highlight efforts to link macroscopic toughness through the
plastic zone down to the scale of atomic decohesion. :

In a remarkable series of experiments, Elssner ez al. ( 1994) measured both the macroscopic
fracture toqghpess, T'ss , and the atomic work of separation, T’ o > of an interface between a single
crysta.l of niobium and a sapphire single crystal. The macroscopic work of fracture was measured
using a four—point bend specimen designed for the determination of interface toughness, while the
atomistic value was inferred from the equilibrium shapes of microscopic pores on the’interface
The crystals were diffusion bonded, and tests on more than one relative crystal orientations were.
perfo.rn?ed. The interface between the two materials, which was fully characterized, remained
atomistically sharp. In addition, experiments were conducted on specimens contajni,ng a small
amount qf segregant of another element on the interface for the purpose of exploring its effect on
the atomistic and macroscopic work of fracture. Data for two of the interfaces are presented in
Table I, one without a segregant and one with a fractional atomic layer of silver. »

Atomistic (T o) and Macroscopic (I’ ss) Work of Nb/A1203 Interface Fracture

Interface with no segregant : Iy =10+ 0.2Jm™2 I'ss = 2100Im™2
Interface with Ag segregant : I'y=0.6 +£02Im™2 Iss = 400Im™2

Il

The values.for I’y are representative of the atomistic separation energy of most metal/ceramic
mterfgces, 1.e. on the order of 1Jm™ . The macroscopic interface toughnesses are representative
of an interface where the metal undergoes plastic deformation in the vicinity of the crack tip. In
the case of all the Nb/ Al,O5 crystal pairs, the separation occurred cleanly down the interface v&;ith
no remnant of either material left on the surface of the other. The two observations relevant to this
overview are (a) the huge ratio of I to I’y and (b) the five—fold drop in the macroscopic tough-
ness b.rou ght about by the 40% reduction in I’y due to the segregant. These experiments provide
a striking illustration of the way plasticity magnifies the work of fracture process when that process
is at the‘ atomic or molecular scale and the interface is strong. They also emphasize jupst how
extr.aordmarily nonlinear is the coupling between the work of the fracture process and the macros-
copic work of fracture through the plastic zone: a relatively small reduction in the strength of the
interface parlays into a huge reduction in the macroscopic work of fracture.
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The EPZ Model captures some of the qualitative aspects of the link to the scale of the fracture
process for such systems, but the model clearly falls short from a quantitative standpoint. Most
notably, the maximum stress levels which can be achieved ahead of the crack tip according to the
EPZ Model (which, it should be recalled, is based on conventional plasticity) is not greater than
about 4 to 5 times the tensile yield stress Oy of the metal, depending somewhat on strain harden-
ing. This is evident from the plots in Fig. 3 for mode I growth in a homogeneous material, which
are also representative of results from the EPZ Model for metal—ceramic interfaces (Needleman
(1987); Tvergaard and Hutchinson (1993); Wei and Hutchinson (1996a)). The stress levels needed
to produce atomic decohesion of a lattice or a strong interface are generally considerably larger
than 50y , more typically on the order of E/30 .

An alternative model of Suo, Shih and Varias (1993), labeled the SSV Model, has been pro-
posed to overcome the above-mentioned limitation of the EPZ Model. In this model, a very thin
elastic strip (of sub—micron thickness) is inserted between the extended crack line and the elastic—
plastic continuum. This might be thought of as the dislocation—free zone surrounding a crack tip
which does not emit dislocations, and Beltz ef al., (1996) have extended the model by suggesting
a self—consistent procedure for establishing the thickness of the elastic strip. The elastic region sur-
rounding the crack tip allows stresses to reach the levels needed to achieve atomic decohesion. As
in the case of the EPZ Model, the SSV Model predicts the relation between I'ss/T; and the proper-
ties of the outer solid, which is also described as a conventional elastic—plastic continuum.
Although stress levels consistent with atomic separation can be achieved, the model nevertheless
appears to suffer from significant inaccuracy for the same reason as the EPZ Model does, i.e. con-
ventional plasticity theory is inadequate at the small scales needed to link down to the crack tip,
as will now be discussed.

It should not be surprising that conventional continuum plasticity fails to adequately repre-
sent behavior all the way down to the scale of the fracture process for such systems. It was devel-
oped for application at much larger scales. There is an increasing body of experimental evidence
indicating scale effects which give rise to higher elevations of flow stress than can be accounted
for by conventional plasticity theory already appear at the scale between 1 to 10 microns (Fleck
et al., (1994) and Fleck and Hutchinson (1996)). Nonuniform deformation can produce local hard-
ening which is magnified by factors of 2 or 3 at these scales. We shall end this overview paper
with some new results demonstrating the elevation of crack tip stresses predicted by a plasticity
theory which incorporates scale dependent hardening. We believe that it is essential to use some
such enhanced plasticity model in conjunction with either the EPZ or SSV Model if the link to the
fracture process through the plastic zone is to be achieved. The role of discrete dislocations ateven
smaller scales lying within the continuum plasticity zone is not addressed here. How the disloca-
tion description and the continuum plasticity description will be merged remains unknown.

The continuum theory of strain gradient plasticity theory of Fleck and Hutchinson (1996)
postulates that hardening is elevated by both strain and strain gradients. The physical basis of the
strain gradient dependence rests on the fact that plastic strain gradients produce geometrically nec-
essary dislocations. When nonuniform deformation takes place at a sufficiently small scale the
geometrically necessary dislocations will become dominant. In other words, elevations in effec-
tive flow stress will depend on both strain and strain gradients. At large scales, gradient effects are
negligible, but they become significant on the scale 1 . Full details of the strain gradient formula-
tion are given in the article by Fleck and Hutchinson. An effective strain E. is defined such that

©)

where €j; is the deviatoric strain and €fj is its gradient. (Complications are omitted here; the
precise form of the effective strain and the precise definition of 1 is given in the cited reference).
The effective stress is related to the effective strain by the same power law relation used in the con-
ventional theory (1 = 0) . Experiments on the torsion of very thin copper wires and indentation
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~ ﬂgﬁﬂﬁi&mﬁ a6 saveral edber metals in addition to copper suggest that 1 is on the order of several
B 1 ie the sole additional parameter characterizing the solid in the new theory.
 Beveral studies of crack tip fields have been conducted based on the strain gradient theory
{}i;mgsg #¢ al. 1996, Xia and Hutchinson, 1996). Here, one set of results from Wei and Hutchinson
£ 1946h) have been selected to illustrate the significant effect strain gradients have on the tractions
slwad of u cruck. The problem is steady—state growth of a mode I crack in a homogeneous solid
under plane strain in small scale yielding. The remote field is the elastic field characterized by K.
or, equivalently, by I'. As before, denote the length quantity which serves as the estimate of theI
half-height of the plastic zone by Ry, where
R, ==L ¥ Bp
303 3n(1 - v2)o?

@)

Let x be the distance ahead of the crack tip, and let ty be the normal traction acting on the extended
crack plane directly ahead of the tip. Fig. 8 presents plots of t,/ Oy versus x/R,, for three values
of 1/Rp . The parameters specifying the solid are listed in the figure captioI;L The curve for
.1/Rp = 0 corresponds to the limit for the conventional solid having no strain gradient depen—

10.00
|
o e

0.00 | | |

| J
0 0.02 0.04 0.06 0.08 0.1
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Figure 8. Normal traction acting on the plane ahead of the crack tip for the strain gradient solid (SG solid) of Fleck

Hutchinson (1996) as determined by Wei and Hutchinson (1996b). The crack is a mode I crack propagating in
s'teady_—sta.te under plane strain conditions. The case 1 /R, = 0 corresponds to the limit of a conventional elastic—plas-
tIiIC sol:)dzwnh no strain gradient dependence. The other parameters specifying the solid are E/oy = 300, v = 0.2 5

dence. ‘This curve is representative of the traction levels that can be attained ahead of a crack tip
according to that characterization for a moderately high strain hardening solid (N = 0.2). By
contrast, the strain gradient solid with 1 /Rp = 0.1 displays a steep gradient of traction ahead of
the tip and has attained a leve] almost twice that of the conventional solid at x /Rp = 0.01 .Itis
expected this tractiox} elevation will have a major effect on the model results of Fig. 3at the.high
gnd of the range of G/ Oy , were the strain gradient plasticity model to be substituted for conven-
tional plasticity in the formulation of the EPZ, Model.
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