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ABSTRACT

Efficient structural design of soldered joints is becoming increasingly important as
miniaturisation continues. The paper explores, from a materials standpoint, how life prediction
approaches used for more conventional high temperature structural materials such as steels,
nickel and titanium alloys, may be suitable for solders. In general, solders operating at around
room temperature are more volatile in their behaviour than the comparator alloys at their usual
service temperatures which may be as high as 1000°C. In particular, the reported values of
modulus for solders exhibits a marked scatter and all their monotonic properties are sensitive to
strain rate. While cooling rate after casting (and initial microstructure) appear to have little
effect on high stress creep, pronounced differences arise when ageing or strain occurs prior to
creep. Unusually, the fatigue life of solders is reduced by all types of dwell during strain-
controlled cycling, and the extent of stress relaxation during dwells is large. The degree of
microstructural instability is high and may merit closer attention in life prediction models than
is necessary for other structural alloys.
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INTRODUCTION

With electronics projected to become the largest global industry early in the next
millennium and an estimated 1013 solder joints being produced per annum (Vincent and
Humpston, 1994) the performance of the latter is receiving ever-growing attention. While
processability/manufacturability of joints is a predominant consideration, two emerging
issues are likely to become critical in the coming decade. These are:

(1) The continuing demand for component miniaturisation had led to a situation,
particularly in Surface Mount Technology, in which solder joints have a structural
role, in addition to providing electrical conduction paths. To guarantee structural
integrity as joint sizes diminish (and service requirements increase) by over-
conservative structural design is no longer feasible. An alternative approach is to
adopt the design methodologies used for advanced technology applications
(aerospace and nuclear power generation) although this has been hindered by the
lack of appropriate data regarding mechanical behaviour of solder alloys.
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In practice, joint failure generally arises as a consequence of thermomechanical fatigue
(TMF) which develops when materials, with quite different coefficients of thermal
expansion, experience fluctuating temperatures stemming from power switching or
changes in external environment. Fully controlled and monitored TMF testing is
extremely time-consuming and expensive, and all high temperature materials design
approaches have: been evolved on the basis of less complex data which additionally,
provide a better insight into the metallurgical phenomena producing the observed

behaviour (Plumbridge, 1996).

The following paragraphs briefly compare the monotonic, cyclic, creep and fatigue-creep
characteristics of the materials and comment on their relevance with regard to utilisation

for life prediction purposes. :

MONOTONIC STRESS-STRAIN BEHAVIOUR

While many design methods are restricted to elastic behaviour, modern high temperature
approaches are able to accommodate plasticity effects. Even here, there is usually an
elastic component which is based upon the proportionality between stress and strain, and
this modulus generally appears as a constant in stress analysis. Intuitively, we expect the
value of a ‘constant’ to be so within a few percent but closer inspection reveals that a
significant degree of variability exists. For 1Cr-Mo-V steel, reported values (Maier, 1987)
of modulus show a + 15 percent variation at room temperature and this increases to +
30 percent at 550°C (Tp = 0.48). For Type 316 stainless steel (Verrilli, et al ., 1992) a
variation of around + 15 percent is observed at ambient and 538°C (T, = 0.48). Some
55 determinations of the modulus of Nimonic 75 at room temperature fell within a + 13
percent band (Dean, et al., 1994). The spread of measured data arises from intrinsic
inaccuracies of the measurement systems, specimen and test machine characteristics and
test conditions (Dean, et al., 1994). A lack of uniformity in procedures and the absence of
detailed information in the literature impedes a proper rationalisation of the problem.
However, review of the published moduli values for solders indicates a far more serious
difficulty since a variation in excess of five is observed (Table 1).

Table 1 - Reported Values of Young’s Modulus for Solders

Alloy Modulus (GPa)
60Sn-40Pb 38.6+4
e 16
2 15
s 30
o 35
% 434
63Sn-37Pb 32
i 30.34
i 5.7
£ 20.5
= 11.1
18.5

A factor which contributes to the above, and which has particular relevance to solders,
is the effect of strain rate. The measured modulus of stainless steels at 816°C (Th =
0.65) is unaffected by a change in strain rate of two orders of magnitude (Berling and
Slot, 1969) whereas increasing the strain rate by this amount produces a 12 percent

increase in a modulus of a 12Cr-Mo-V steel at 550°C (Th = 0.55) (Hartnagel et al.,

1992). In contrast, the measured modulus of a near-eutectic solder at room temperature
increases by almost 50 percent as a result of the same change in strain rate (Jen and
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Extended ageing produces only slight (<10%) strengthening in stainless steels in the
temperature range 5-700°C, together with a reduction in ductility of up to 50 percent.
Cold work produces effects of a similar magnitude, but in combination with prior ageing
these are reduced (Plumbridge, 1996). While deformation effects are identical in ICr-Mo-
V, the influence of ageing is insignificant in this, and the other heat treated comparator
alloys, unless the exposure temperature is greater than that of the ageing temperature.
For example, the strength of 1Cr-Mo-V was unaffected by ageing for 104h at 600°C
since its heat treatment included an anneal at 700°C (Plumbridge and Bartlett, 1981).

CREEP BEHAVIOUR

Operating at such high homologous temperatures, it is inevitable that the creep behaviour
of solder alloys will be a significant factor in determining joint performance. Since
joints are formed in-situ, then it is probable that their initial condition, or microstructure,
will vary both from component to component (according to the sizes and thermal
conductivities of the joint elements) and more locally, within a single joint as
determined by local cooling rates. The obvious question is ‘how does this variability in
starting point affect creep behaviour?’ It is pertinent to note that it is likely to be creep,
rather than monotonic or high strain cyclic properties, that might be expected to be
most sensitive to microstructural effects.

To answer the question above, bulk samples of eutectic lead-tin solder were subjected to
different cooling rates on solidification and subsequently crept (Plumbridge and Gagg,
1996). Figure 3 clearly indicates that a cooling rate change from 4 °Cs-! to 7x10-3 °C s-
1 has a marked influence on microstructure, when the dendritic and lamella eutectic
configuration produced by slow cooling is replaced by a more uniform arrangement of
the spheroidal lead-rich phase, after quenching. Constant stress creep testing at 75°C
shows little effect of initial microstructure (Plumbridge and Gagg, 1996) and the majority of
data fall within a range of three on life. (Fig.4).

Fig. 3 Effect of cooling rate on microstructure of a eutectic lead-tin solder

a) furnace cooled; b) water quenched
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Fig. 4 Influence of cooling rate on creep of a eutectic solder at 75 °C.
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Fig.5 Effect of prior ageing and prior strain plus ageing on creep of a eutectic solder at 75°C
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Initial cooling rates have no consistent effect upon creep strains to failure. However, in
the air-cooled and water quenched conditions both ageing and strain plus ageing enhance
subsequent creep ductility, sometimes quite significantly (up to 5-6x). This effect is not
apparent in the furnace-cooled condition, except for ageing at 130°C. Otherwise, the
strains to failure are similar or slightly reduced with respect to the slow cooled alloy.
Variations in creep ductility may have a direct influence upon fatigue-creep performance
when creep processes dominate. Endurance may be extended with increasing ductility and the
possibility of a transition to fatigue domination or a mechanistic interaction between creep and
fatigue processes is enhanced.

The results reported above, obtained within one laboratory using a single batch of
material, are in general agreement with other published work (Kashyap and Murty, 1983).
For joints also, findings are apparently conflicting. For example, severe ageing (200 days
at 170°C) impairs the room temperature creep strength at high stress levels but enhances
it at lower values (Anon B, 1987). It is difficult to determine clearcut trends in this
behaviour, and a complete understanding is some way off. From the designers viewpoint,
however, the salient feature is that for the relatively short lifetimes examined (<1000h),

all data fit reasonably well onto the Monkman-Grant expression (;:tr= Constant). (Fig. 6).
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Fig. 6, Minimum strain rate versus time to rupture for creep for all conditions and prior

treatments. (The solid line is the best fit for the unaged alloys).

Of the comparator alloys, the effects of prior strain and ageing have been most
extensively examined in stainless steels. In the absence of recovery and recrystallisation,
cold work considerably enhances subsequent creep resistance, albeit at the expense of
ductility (Donati et al ., 1974; Bernard et al., 1981). Ageing (10%h at 625 and 675°C)
increases minimum creep rate by some 5x and rupture time is reduced by 75 per cent
(Dean and Plumbridge, 1981; Sikka et al., 1977). These effects appear more pronounced at
high applied creep stresses above yield. Similarly, in service ageing (1.25x105h at
618°C) produces an order of magnitude reduction in time to rupture, together with a fall
in ductility which was associated with the formation of brittle intergranular phases (Ellis
and Byum, 1983).
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FATIGUE BEHAVIOUR

As the softest component in the joint, the solder experiences the majority of deformation
constrained within it. Load changes during strain controlled fatigue indicate that eutectic
solder cyclically softens continuously throughout life. These strength changes arise due to
microstructural ~ deterioration and crack initiation and growth. Since there is no clear
plateau in the load range v cycles plot, it is difficult to identify precisely when the
onset of significant cracking occurs. (Sandstrém, ef al., 1993 and Jiang et al., 1996) propose
that the majority of the load fall may be attributed to cracking. The extent of the
softening at half life is about 20 percent with respect to the first cycle. This is similar
to that measured in a 1Cr-Mo-V steel at both room temperature and 565°C (Plumbridge
and Bartlett, 1982) Annealed Stainless steels cyclically harden considerably and a
doubling in strength can be achieved (Plumbridge et al., 1980). Titanium and nickel alloys
are usually very stable at temperatures around 600°C and 900°C respectively, although
the latter does exhibit hardening and softening, according to strain range, above 1000°C
(Plumbridge and Stanley, 1986; Plumbridge and Ellison, 1991). Unlike titanium and nickel
alloys but similar to low alloy and stainless steel (Plumbridge and Bartlett, 1982;
Plumbridge ez al., 1980) there are only very small mean stresses (<1MPa) developed
during fully reversed strain cycling. These are most apparent in the case of the
unbalanced tensile dwell cycle profile and reach about 3 MPa in compression. Although
these are still small, in this sense they would probably be beneficial, acting against the

tendency for grain boundary cavitation during the stress relaxation phase of the dwell in
tension.

In all dwell tests, the extent of stress relaxation, even during a 10s hold, is substantial
and constitutes at least sixty percent of the stress applied. This increases to over eighty
percent with increasing dwell duration up to about 100s but appears unaffected by the

precise cycle shape. Normalised by the peak stress, Op, at the start of relaxation, this
‘damage’ constitutes a larger proportion than that usually observed. For example, in
Type 316 stainless steel (Majumdar and Jones, 1990) O:/Cp is about 18 percent (T, = 0.53)
and about 55 percent in 1Cr-Mo-V at Th = 0.49 (Ellison and Patterson, 1976). Similar
comparisons are more difficult to draw in the nickel and titanium alloy because of the
mean stresses developed. However, for MAR MO02 at 1050°C (Th = 0.80), where these
are relatively small, the ratio reaches about 50 percent in 100 seconds (Plumbridge and
Ellison, 1991). In Type 304 stainless steel at 593°C (Tj= 0.52) stress relaxation
continues for periods up to at least 600 minutes (Majumdar and Jones, 1990) but even
after this duration it constitutes only around 20 per cent fall from its original value. It
is significant that, apart from the stainless steel, the alloys exhibited a creep dominated
failure and thus required a life prediction approach which could accommodate this.
However, the assumption that all the strain produced by stress relaxation contributes to
damage in a single location is erroneous, since it is partitioned between matrix and
grain boundaries according to the operating strain rates. Assuming a value for Young’s
modulus of 30GPa, the variation is tensile strain rate during the dwell for the solder is
between 1.7x10-3s-1 and 1.7 x 10-6s-1.

In terms of endurance, the insertion of a hold period into the strain cycle produces a
significant life debit, which is more pronounced at the lower strain range examined.
Somewhat unusually, all types of dwells are deleterious with the tensile-only dwell cycle
slightly more damaging than the other profiles. There is also evidence of a saturation
effect for dwell periods in excess of 100s. (Fig.7)
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merits serious consideration when attempting to apply trends in the established structural
alloys to solders. Overall, our current knowledge-base and level of understanding are
limited. Considerably more work is required to develop a thorough mechanistic
appreciation of ‘the processes likely to cause failure in service.
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