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ABSTRACT

Hydrogen diffusion and crack growth are coupled processes in hydrogen assisted
cracking so that the particular histories of evolution of both stress intensity factor
K and crack size a influence crack growth rate v at the same instantaneous K-
value. Consequently, the crack growth kinetics curve v = v(K) in general does not
possess intrinsic character as a unique material's characteristic curve. However,
a special regime of steady-state crack growth is seen to exist for which hydrogen
assisted cracking turns to be a really K-dominated process. The correspondent plot
of steady-state v-K acquires the uniqueness of a material's characteristic curve
which may be used in engineering to provide conservative assessment of materials
resistance and structural integrity under hydrogen assisted cracking conditions.
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INTRODUCTION

The fracture mechanics approach is widely used to account for hydrogen assisted
cracking (HAC) in assessment of integrity of materials and structures (Gangloff,
1988). It is based on the crack growth kinetics (CGK) curve "crack growth rate
(CGR) v vs. stress intensity factor (SIF) K", v = v(K), as an intrinsic characteristic
of the material-environment system. This suggests that equal SIF values induce
the same CGRs in a given material under fixed environmental conditions
irrespective of geometry and mode of loading of a specific body, i.e., the CGK curve
possesses the uniqueness of a constitutive-type relationship. In other words, HAC
is considered to be a K-dominated process.

Although ample experimental data support this approach (cf. Gangloff, 1988),
some experimental observations raise doubts on the intrinsic character of CGK
curves for environmentally assisted cracking in general (Kharin and Toribio, 1996)
and reveal uncertainty of cracking characterization, since the same SIF values do
not always result in equal CGRs for a given material-environment couple.
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where the formal solubility-like term K is:

K" =K (0.60) = Kio,6;) exp(~ ®)

where o and &, are the hydrostatic stress and the equivalent plastic strain.

On the basis of relations (3) and (4) and assuming a constant diffusion coefficient,
further transformations of equation (2) yield:

% =D [V2C —M*eVC -N*C ] (6)

where the coefficients M and N* are correspondingly the following:
M* =V [InK,0,60)] and N*=V2[InK,(c,60)] @)

Assuming K-dominance over the near-tip stress-strain field under small scale
yielding, the equation coefficients (7) in the vicinity of the crack tip depend
parametrically on SIF and CGR (apart from spatial coordinates):

M*=M‘Kyp) and N*=N'Kyp) 8

Therefore, concentration of hydrogen near a moving crack tip determined by the
equation (6) of stress-strain assisted diffusion should have not only SIF, but also
CGR, among its governing parameters, i.e., C = C(x,t; K,v). For HAC, v becomes
one more unknown a priori variable in the coupled problem of hydrogen diffusion
and crack growth. To close the system of equations of this problem, a criterion of
crack growth is needed. It may be formulated in general form as:

Clxe,t; Kv) = Co(Kxe) 9

i.e., crack extends so that hydrogen concentration C reaches a critical value C,, at
(cf. Toribio and Kharin, 19964, b).

anme anamfiad dictance » = v from the tin . |
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On establishing the right-hand part of relation (9) this formulation of the coupled
diffusion-cracking problem is completely closed if SIF is somehow known, e.g., is
maintained constant as in some fracture mechanics test specimens (cf. Ahmad
and Ashbaugh, 1982). For this case, if the left-hand part of expression (9) is a
solution of the diffusion equation (6) parametrically dependent on v, the CGR

comes from equation (9) as:

v=v (K} (10)
That is, CGR must not be the same at equal values of SIF, but varies with the
HAC process time £.

However, in a majority of situations SIF depends on both applied load and current
crack length. Then the problem is similar to the one of K = const, but now the left-
hand part of equation (9) to determine CGR becomes not a function parametrically
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i the steady-state solution for hydrogen diffusion near a stationary crack (Toribio
and Kharin, 1996b) attained at ¢ — oo.

Relation (14) yields:

= [—2——]? (16)
i By [e c-l(Cc,/Cu,)]

where erfc—1(e) is the function inverse to erfc.

From expression (13) it follows that CGR at fixed SIF is a rising function of time
which starts to increase from v = 0 at ¢ = ¢;, and approaches asymptotically some
steady-state value v as ¢ — oo. Expression (13) renders:

D [ Cor(K) ] _D [Cm(K)} a7

L R L 79 b [ )

The validity of relations (11)-(13) and (16)-(17) relies strongly on the assumption
about negligible time dependence of the diffusion equation coefficients (7), which
presumes the same regarding CGR, i.e., v(¢) = const with reasonable accuracy.
However, the obtained result does not confirm this hypothesis, since time
variation of CGR according to (13) does not seem to be as slight as necessary for
acceptable accuracy of expression (11) and the subsequently derived formula (13)

for CGR itself.

Nevertheless, in spite of the roughness of this solution for the coupled diffusion-
cracking problem, it clearly proves the intrinsic variability of CGRs values at a
fixed SIF level. Hence, in general, CGR is not a single-value function of SIF, and
CGK curve does not possess the intrinsic uniqueness as a characteristic curve of a
material-environment system.

It is interesting to discuss the two limit situations. For applied K-values close to
the threshold SIF K;;, (at which v = 0), critical concentrations approach the steady-
state level: C,,/C.. = 1 as K — K. On the other hand, as K — K, the latter being

sSLale 1evel, LeopfUos oLn L

the fracture toughness of the material in air, less hydrogen is required to cause
crack growth, i.e., C. = 0, and C../C.. — 0, too.

Thus, the ratio C.,/C.. is a monotonous diminishing function of SIF, and the same
does the incubation time according to expression (16): for SIF values K; < Ko
corresponding tin1 > tin2. At the same time, according to expression (17), the
steady-state CGR is likely a rising function of SIF. This kind of K-dependence of
both incubation time and CGR (theoretically predicted) agree fairly well with
available experimental observations (LLandes and Wei, 1973; Hudak and Wei,
1979) of HAC under constant SIF, sketched in Fig. 1 in a plot representing CGR
vs. time for two different constant levels of K.

Therefore, although alterations of CGR may be generally different at variable SIF
this particular case of K=const. provides evidence that CGK curves for a particular
HAC process in a given material-environment system may diverge widely, in a
noticeably band below steady-state CGR vgg at the least.
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erack tip. Consequently, with steady-state concentration from (18) and expression
(5) for K,*, crack growth criterion (9) yields the steady-state CGR which is exactly
the same as derived above (17) from estimation (13) of transient behaviour of
CGR. Thus the approximate nonsteady solution (13) has the right asymptotic

behaviour, too.

1t is evident that the steady-state CGR (17) depends —apart from SIF— only on
the characteristics of the material and the crack tip environment, such as
diffusion coefficient D, specific scale x., hydrogen activity in near tip environment
represented by C,, and others which might be involved if the dependence of
solubility coefficient K, on stress and strain were considered explicitly (Kronsthal
and Kharin, 1992). This CGR is a single-value function of SIF, and the CGK curve
as a plot of steady-state values of CGR vs. SIF possesses the uniqueness of a
material's characteristic curve. This stage of HAC process, the steady-state crack
growth, appears to be really K-dominated.

CLOSURE

The coupled analysis of the interaction between hydrogen diffusion and crack
growth reveals that K-dominance over the near-tip elastoplastic stress-strain field
does not guarantee that the HAC process is K-controlled in general, i.e., a given
SIF does not render a single value of CGR. Accordingly, plots of v(K)-dependence
cannot be considered as intrinsic curves which characterise HAC in particular
material-environment systems. Instantaneous CGR at each reference SIF value
turns to be a variable depending on initial conditions and subsequent history of
cracking process in terms of time variations of K(f) and v(¢).

However, a lot of test data and engineering experience confirm reasonable
uniqueness of CGK curves and applicability of the fracture mechanics approach to
HAC for a wide variety of situations, although numerous ambiguities have also
been well documented, too (cf. Kharin and Toribio, 1996). This indicates, that
intrinsic not K-controlled scatter of CGR under certain circumstances sometimes
can be rather narrow so that the uniqueness of CGK curve may be granted with
reasonable accuracy, e.g., within the band of statistically random scatter
associated with cracking.

Furthermore, a special regime of steady-state crack growth does exist for which
the distribution of diffusible hydrogen around the crack tip is totally determined by
the SIF (apart from characteristics of the specific material and environment) and
the CGR is consequently K-controlled. In this special case, whichever criterion of
local fracture —dependent on the concentration— combined with the steady-state
solution of the coupled diffusion-cracking problem yields a steady-state CGR vgs
being a single-value function of the SIF for a given material and specific
environmental variables governing crack tip hydrogenation. This is a valuable
attribute of the steady-state CGK curve which allows it to be adopted as a check-
point to provide conservative evaluation of material susceptibility to HAC and
structural integrity assessment.
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