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ABSTRACT

The prediction of Fracture Toughness in the Ductile to Brittle transition region for irradiated
material is a multi-stage process involving the estimation of start-of-life Fracture Toughness and
Charpy Impact energy curve shift due to irradiation. The estimation of the uncertainty in Fracture
Toughness after irradiation requires a framework for combining the uncertainties at each stage.
This can only be achieved by determining probabilities from the analysis of the data at each stage.
A three step strategy for obtaining these probabilities is described together with a procedure for
combining them.
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INTRODUCTION

The assessment of the safety, against catastrophic failure, of reactor pressure vessels which
experience neutron irradiation induced material property changes is usually based on an estimate
of the start-of-life (SOL) fracture toughness in the ductile-to-brittle transition region and a dose
dependent shift parameter to give end-of-life (EOL) values at a particular dose level. In many
instances the effect of neutron irradiation dose on the properties of reactor steels has been
monitored through Charpy impact energy measurements over a range of temperatures which
encompass the ductile-to-brittle transition.

In order to provide an input to a deterministically argued safety case, both the SOL fracture
toughness and the Charpy data are usually analysed to give best-estimate values and confidence
limits. EOL best-estimate and limit predictions are then determined by a combination of the SOL
and temperature shift from which only very pessimistic predictions of unquantifiable uncertainty
can be made, although more precisely defined confidence limits are often claimed. This
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methodology does not provide the probability estimates for the EOL properties which are required
for a Probabilistic Safety Assessment (PSA) and which would also better serve a deterministic
argument.

The purposes of this paper are to describe a strategy which would provide EOL fracture
toughness probability curves on the basis of SOL plus shift estimate; to identify the elements
which are already in place and, by comparison, emphasize the inadequacy of the present
procedure. The paper is structured firstly to describe the main stages in the methodology for
producing predictions of the EOL curves at various probability levels and, secondly, to explain
how data at each stage may be analysed to provide probability estimates which are the only
quantities providing the mechanism for a rational combination of uncertainties.

METHODOLOGY FOR PREDICTION

The main features of the analytic process for developing fracture toughness predictions are shown
in Fig. 1. The process and the attendant statistical needs can be summarised as follows:

i measure and analyse SOL toughness data to provide a best-estimate curve fit and
uncertainty estimates,

i show by experiment that it is reasonable to link a point on the SOL curve with a
secondary property - in this case the Charpy Impact energy,

il. measure Charpy data for a range of neutron doses and analyse the results at each dose to
derive a Charpy curve and hence the T, value,

iv. obtain best-estimate AT,,; and uncertainty estimates,
V. analyse AT, in terms of dose to obtain a best-estimate fit and uncertainty estimates
limits,
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This is evidently a multi-stage
process with each stage usually
requiring an analysis of the data
in terms of models which are
described by more than one
parameter. A key question here
is whether the analytic approach
and techniques used do provide a
mechanism for linking
uncertainties in multi-parameter,
multi-stage processes. It should %,
be noted that if the populations
from which the data are sampled
are non-symmetric then the usual
route for representing uncertainty
in terms of standard errors and
confidence limits is
inappropriate. This applies to an
even greater degree where a
combination of such quantities in
a multi-stage, multi-parameter is
used. These problems can only
be overcome by making the
objective of the analysis to be one
of providing probability estimates
at every stage eg at stage iv, the
outcome should be a probability
distribution for AT,,. A general
strategy to achieve this is
described in the next section and
its application is discussed in
subsequent sections.

Start-of-Life Fracture
Toughness

Temperature + shift
Fig. 1: Predicting Fracture Toughness after Irradiation

GENERAL ANALYTIC STRATEGY

A general strategy for the analysis of material property databases to produce probability
distributions is provided by:

i define probability model

ii. use method of Maximum Likelihood Estimation to determine best-estimates of model
parameters and their precision

il derive parameter probability distributions using Bayesian concept and a suitable sampling
algorithm

A clarification of each of these steps will now be given..



270 Windle
The Probability Model

For a complete probability model,

the form of the distribution and the
relationships linking the population
characterising parameters, such as

the mean and variance for a

Normal distribution or the shape wil g
and scale for a Weibull, with the FROERIY
independent variables would be
obtained from theoretical and/or
experimental studies of the
physical processes. Such a model

is shown schematically in Fig. 2 ;

the material property measurement

is the dependent variable and
temperature is the independent
variable.

TEMPERATURE

Fig.2: Schematic Probability Model

Note that these probability models are structured to include any understanding, or prior beliefs,
about the physical mechanisms which underpin the data and often involve several fitting
parameters, the values of which are determined in the data analysis. Having identified a
probability model of this nature, the most appropriate tool for analysis uses the Likelihood
Theory.

Moaximum Likelihood Estimation

The likelihood function is algebraically the same as the joint probability density function (ie the
probability of obtaining the set of experimental observations conditional on the value of the
parameter vector) which can be defined for the measured material property values on the basis
of the model and a parameter vector. It indicates the likelihood, given the data, of specified

vectar B faaxy) and i+ 10 ranragantad fe 4llio naaan
values of the unknown parameters, or parameter vector 8 (say), and it is represented in this paper

by 1(8;data). Note that there is a shift of emphasis from a consideration of the experimental
observations as being the unknown random quantity values to the model parameters being these
unknowns with the set of observations fixed.

By varying the values for the model parameters a likelihood surface is constructed from which

best-estimate values for the model parameters are identified at the maximum value of the
likelihood. The precision in these values is determined from the shape of likelihood surface in the
form of standard errors and, hence, confidence limits. It should be noted that such an analysis
procedure can only indicate the range of possible values for the best-estimate position at the stated
level of confidence and nothing more. The development of probability distributions uses the
output of the Likelihood analysis in the procedure described in the next section.
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Bayesian Probability Estimation

In the Likelihood theory approach, it is
considered that there is only one 'true' value

for each model parameter which is then  POPULATIONS ?
estimated together with its precision. A {,“MODEL ‘ﬁ\ /i\ A
: ; SO ARAMETERS a, 1
Bayesian approach views the situation g, L
slightly differently but uses the same model ofak) ﬁb) 1(k)
formulation. In this, the set of parameters
(or parameter vector 8) is the value of a
random quantity, ©, since the analysis of
datasets from similar experiments is likely to
produce a different set of values for the
parameters ie a different parameter vector 6.
The parameter vector 6 is a possible set of

values which lie within the sample space ©,

it is one of a population of possible

parameter vectors for which a probability e

estimate can be derived from the data NORMAL \
analysis. Equivalently, the observations are mms

considered to have been made on a family of )

curves each curve being uniquely defined by
one set of model parameter values.

MULTIVARIATE NORMAL SAMPLING
DISTRIBUTION FOR MAXIMUM

LIKELIHOOD ESTIMATES (k) (),
()

FROM SAMPLING
POPULATIONS FROM MODEL
The purpose of the procedure is to identify PARAMETERS USE D INMCMC

these underlying populations of parameter
values by generating samples from them
using a Monte Carlo Markov Chain
(MCMC) algorithm which is guided by the
form of the Likelihood surface, refer to
Smith and Roberts (1993) and Hastings (1970). This strategy is illustrated in a simplified form
in Figs. 3 and 4.

Fig. 3: Procedure to Identify MLE Sampling
Distributions for MCMC Algorithm

Figure 3 illustrates diagrammatically the population of values for three parameters (unknown).
Maximum Likelihood estimation provides a value from these distributions at, or near, the most
probable value together with an indication of the precision with which this value is defined. This
is ‘the so-called 'standard error' which represents the width of the sampling distribution of
Maximum Likelihood estimates. For a multi-parameter model, the sampling distribution is a
multi-variate Normal which can be deconvoluted to separate Univariate Normal sampling
distributions for the Maximum Likelihood estimate for each model parameter. These distributions
are the starting points for the MCMC routine.
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Figure 4 shows the method of generating
parameter values which are drawn from the
underlying populations (not the sampling
distribution). This process is effectively
using the likelihood surface as a map to
indicate those sets of parameter values
which are more probable than others as a
description of the observations. For
simplicity the Figure shows, schematically,
a likelihood surface for two parameters 6,
and 6,. To ensure that values from the tails
of the parameter populations are also
generated a further randomisation step is
introduced. The steps are:
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i from first set of selected parameter
estimates calculate Likelihood L, (say);

ii. this is a point on the surface at which
an imaginary probe is positioned with a
search area, V,, having a size governed by
the MLE for the variance/covariances of the
Maximum Likelihood values - use the
univariate sampling populations centred at
this point to generate another set of
parameters;

Fig. 4: Process for Generating Samples

iii.  from second set calculate Likelihood from Parameter Populations .

and hence ratio of second to first, L,/L;

iv. compare this ratio with random number chosen in range 0 to 1 and if the ratio is greater
then accept second set of parameter values otherwise continue with first set;

v. having determined a second acceptable set, reposition the 'probe' at this location and
generate a further set of parameter values from the search area, V,, which give L; for the
acceptance/rejection step;

vi. repetition of process generates values from the model parameter probability distributions -
the secondary randomisation step described in iv. ensures that values from tails of the distributions
are also accepted.

Essentially, this sampling algorithm is determining those values of the parameters which produce
a fit between the model and the likelihood surface. Those values which give the better fits will
be accepted more frequently than those which do not and hence the appropriate posterior
probability density for each is identified. By this process any dataset can be analysed to produce
a sample of parameter values generated from initially unidentified probability distributions.

e
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PROBABILITY ESTIMATES FOR END-OF-LIFE TOUGHNESS

A strategy for the derivation of probability estimates for the toughness of irradiated pressure
vessel metal requires that probability estimates are available for the start-of-life fracture toughness
and for the shift parameter AT,y The three step procedure for obtaining these has been
described in the previous section. As a starting point ( ie the choice of a probability model) for
the Start-of-Life Fracture Toughness data reference should be made to the Wallin (1991) and
Moskovic (1993) and for Charpy Impact energy data from irradiated specimens refer to Windle
(1996).

Having derived samples from the probability distributions for the parameters of the SOL
toughness model (herein, this parameter vector is represented by 8) and from those for parameters
of the Charpy model (shown as ¢), a procedure for generating K, curves at a certain neutron
dose (ie EOL curves) can be defined. Such a procedure is as follows:

1. take one value of the parameter vector, call this 8', for the SOL model from the sample,
choose a temperature T; and calculate K'(SOL);using the model calculate the temperature, T g,
(SOL), at which the shift reference point on the SOL curve (ie Kc=100 MPavm) is reached;

ii. using all the Charpy model parameter vectors, &, together with a 40J Charpy Energy and
an appropriate irradiation dose, generate the distribution for AT,y and add this to T; to produce
the distribution of temperatures at which K'(SOL) would be an EOL value;

iii. repeat i and ii for different 8 and collect together all the K values at the same
temperatures;

iv. repeat steps i toiii for a range of T, and hence generate populations of K;(EOL) for each
T

V. derive the required probability curves as those connecting the appropriate K;c(EOL)

distribution percentiles at each T;, for example the 5% and 95% points.

CONCLUDING REMARKS

It is an essential requirement for the production of safety assessments for nuclear reactor
pressure vessels, of both the deterministic and probabilistic type, that an estimate of the
uncertainty in the Fracture Toughness in the Ductile to Brittle transition region, after
irradiation, is available. This estimate can only be derived from a combination of the
uncertainties obtained from the analysis of start-of-life Fracture Toughness and the analysis
of a material property, in this case Charpy Impact energy, which changes with irradiation.
Any strategy which attempts to combine uncertainties in the form of confidence limits or
standard errors cannot provide a quantifiable estimate of the uncertainty or ‘confidence’ at the
end of a multi-stage procedure. The only route is through the determination of real
probabilities at each analytic stage.

A three step procedure to produce probability estimates which has general applicability to any
material property database is:
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i define a probability model which incorporates any prior understanding of the physical
processes or, if this is not possible, which is empirical;

i, use the Likelihood theory approach to analyse the data on the basis of the probability
model and, hence, obtain Maximum Likelihood Estimates of the model parameters and their
standard errors;

ifi. use the Bayesian approach and a Monte Carlo Markov Chain sampling algorithm to
provide estimates of true probabilities.
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