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ABSTRACT

The influence of different pretreatments typical to production of car bodies
on fatigue properties in fully reversed straining was studied for a dual
phase steel with tensile strength of 410 MPa. The pretreatments were pre-
straining in uniaxial tension, equibiaxial stretching and plane strain de-
formation followed by ageing. All prestrainings were tested both with and
without ageing. The monotonic flow stress increased significantly when the
material was pretreated. A much smaller effect was observed on the cyclic
stress amplitude at half fatigue 1ife. Both positive and negative effects of
pretreatments on the stress amplitude were observed. The specimens showed
cyclic softening during the first tenth of fatigue life. Pretreated mate-
rials softened more than the as received material did, resulting in a some-
times negative influence of pretreatments on the fatigue properties.

The influence of pretreatments on fatigue life was investigated by plotting
life versus total strain amplitude, stress amplitude and Neuber factor.
Different pretreatments produce amplitudes at constant 1ife within a 30
percent band or smaller around the data for as received material.
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INTRODUCTION

High strength steel sheet in cold rolled gauges are coming to use in auto
bodies in order to save weight by reduction of sheet thickness. Special
interest has been drawn to the continuously annealed dual phase steels.
These steels have a ferritic-martensitic structure with a relatively low
yield strength but a high tensile strength. This means that the steels
obtain important strength increments during pressing. Another important
property of the continuously annealed dual phase steels is the strength
increment during ageing (bake hardening) as in the baking treatment after
painting.
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fhe mechanical properties, in the rolling direction, of the as received mate-
Fial are given in Table 2 together with microstructural data. The tests were

performed in a mechanical Schenck-Trebel testing machine at an initial strain
rate of 0.002 per second. The gauge length was 50 mm and the width 12 mm. The
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Fig.2 Specimen geometry. The specimen
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Table 1 Chemical co bgd FATIGUE TESTING PROCEDURES
MpOsition (weight percent)
Strain controlled fatigue tests were performed with fully reversed straining

The difficulties associated with this type of tests on sheet specimens has
been extensively reviewed by Miller(1985) and Miller and Reemsnyder(1983).

The design of specimen used in this work is illustrated in Fig.2. A servo-
hydraulic MTS machine with a maximum load of 100 kN was used. A rigid set-up
of grips was designed which allowed very accurate alignment. Twisting of the
actuator part of the grips was prevented by the action of guiding pins. The
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RESULTS FROM FATIGUE TESTS
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small strain amplitudes failure out-
ing of the specimen

attainable strain amp1litude was

and the total stress range, Ac

stress ranges are obtained at the half lives. Prestraining in plane strain is
#n exception to this description. Very little softening is observed initially
in this case. Baking after equibiaxial prestraining gives initially an incre-
sent of the stress range. Softening, however, proceeds so rapidly that the
stress range at the half 1ife is only slightly larger than the ranges of
ss-received and of equibiaxially prestretched materials.

Comparison of cyclic and monotonic flow stresses

fhe flow curves in monotonic uniaxial tension are illustrated in Fig.4 for
8] pretreatments but equibiaxial stretching and equibiaxial stretching and
sged. The monotonic flow stresses increase significantly upon prestraining.
An ageing treatment increases the monotonic flow stress in all cases of
Fig.4. The effect is largest in the cases of plane strain and in specimens

without prestraining.

The stress amplitudes at half fatigue life versus the strain amplitude are
{1lustrated in Fig.5 together with the monotonic flow curve of the as re-
ceived material. The cyclic stress amplitudes are smaller than the monotonic
flow stresses due to cyclic softening. The influence of prestraining and
ageing is significantly smaller for the cyclic stress amplitude than for the
monotonic flow stress. Prestraining in plane strain has a positive effect on
cyclic flow stress. Ageing is positive in the cases of prestraining in
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Fig.5 Stress amplitude (Ac/2) at half
fatigue life versus strain amplitude (A&/2)
after various pretreatments and the mono-
tonic flow curve for the as received con-.

ditions from Fig.4.

Fig.4 Flow stress (o) versus
strain (&) for monotonic tests
in uniaxial tension after
various pretreatments.

uniaxial tension (5 and 2 percent) and equibiaxial stretching but negative in
as received and prestrained in plane strain conditions. The maximum
difference between different pretreatments is less than 70 MPa in the cyclic
case but 170 MPa in the monotonic case (30 and 50 percent respectively).
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Fatigue 1life
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Fig.8 Fatigue 1ife versus Neuber factor for various pretreatments.

DISCUSSION

It has been shown in this paper that fully reversed cyclic straining is often
associated with softening for the present steel. Softening proceeds during
the first stage of fatigue life and is followed by hardening. In as received
material it is likely that softening is associated with a break down of the
dislocation structure around the martensite islands. This dislocation struc-
ture is originally created during phase transformation. It is also possible
that the fine carbides in the ferrite matrix which are created during the
over ageing treatment in the continuous annealing line are broken down by the
cyclic deformation so that their hardnening contribution decreases. The
cyclic hardening which is often observed during the final stage of fatigue
1ife is probably caused by the creation of a dislocation structure in the
bulk of the ferrite. The results from prestrained and baked material show
that the hardnening contribution from these dislocation and precipitation
structures is broken down more rapidly than from the as received structure
during cyclic straining. Prestraining in plane strain seems to produce a
dislocation structure which is more resistant to the cyclic straining than

the other predeformations.
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CONCLUSIONS

The fatigue properties were evaluated for a cold rolled dual phase steel
specially designed with bake hardening capability and with a tensile strength
of 410 MPa. The influence of prestraining in different modes and baking was
investigated. The tests were rerformed in fully reversed strain control.

1. Prestraining and ageing produce significant increments in monotonic flow
stress in the investigated cases. The maximum observed increase of flow
stress from pretreatments is 170 MPa which is 45 percent of the flow
Stress of as received material.

2, The cyclic stress amplitude at half fatigue 1ife is less sensitive to
pretreatments than the monotonic flow stress. The maximum observed in-
crease of stress amplitude from pretreatments is 40 MPa corresponding to
12 percent. Also reductions of the stress amplitude are observed after
pretreatments by up to 30 MPa or 10 percent. Increments in stress ampli-
tude are observed after prestraining in uniaxial tension and plane
Strain but reductions occur after equibiaxial stretching.

3. Prestraining and ageing hive small effects on the total strain amplitude
at a certain fatigue life. The Studied pretreatments influence the total
strain amplitude by less than 20%. The effects are often negative.

4. The stress amplitude at a certain fatigue life increases with predefor-
mation in plane strain and uniaxial tension. Prestraining in equibiaxial
stretching does not change the stress amp 11 tude significantly. Ageing
after predeformation has a small effect on stress amplitude at constant
life. The observed effects of pretreatments are within +20 percent to
-10 percent in stress amp litude.

5. The Neuber factor at a certain fatigue 1ife changes little with diffe-
rent pretreatments. The maximum difference in Neuber factor at constant
life is 10 percent.
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