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ABSTRACT

eview is conducted to discuss the phenomenon of size effect on material
rength; the theory of extreme values is the primary analytical tool used.
bull (1939) was the first to give a reasonably satisfactory explanation
the volume effect on material strength using the 'weakest-1link' theory.
erimental data showing how strength of cement mortar decreases with vol-
are compared with the Weibull theory. The agreement is found to be ex-—
tlent. Fracture in its general setting, regardless of the mechanics of
silure, leads to the same problem, namely, the distribution of the smallest
iue in large samples enabling the use of extreme value theory. A simple
{vation reveals that, regardless of the type of extreme value distribution
tulated for material strength (Type I, Type II, and Type III), the mean
ength shows dependency upon the size. The size effect of fibrous compos-
4 obeys the same general relationship as that for brittle materials.

astly, the weakest-link concept, and thereby size effect, is directly appli-
shle to fatigue strength at an arbitrarily preassigned life N (cycles) but

st to the fatigue life. An attempt is made to summarize the present state
 knowledge and to identify unsolved problems requiring further research.
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INTRODUCTION

iability of structures depends strongly on the entering load and resis-—
ance distribution functions. Resistance or strength of a material is known
o exhibit size effect. By size effect we mean that the strength of a piece
f material varies with its dimensions in a way which is typical for the type
f material and the geometrical form of the object. The objective of this
aper is to study, primarily by reviewing the existing literature, the size
ffect of materials employing the statistical concepts of material science
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i i : : fe t volume v are observed:
such as the weakest-link concept or more basic extreme value distributions, feren

<
]

Early Studies Including the Weibull Theory

The phenomenon of size effect on material strength has been known for more
than a century. Karmarsch (1859) represented the tensile strength of meta
wires by an expression of the form F = A + B/d, where d is the diameter a
A and B are constants. Chaplin (1880) presented theoretical arguments and
experimental data to show that one should expect a decrease in the median
(or mean) strength of a bar with an increase in length. Griffith (1920,

that stress and strength are interchangeably used in Eq. g becav.}sele
»'ngth is equal to stress at failure. If o, may be neglected, a simp

ession relating the mean values of strength to the corresponding volume

ound:

1924) has reported the results of theoretical and experimental studies of 5 v 1/0
rupture in glass and other solids, laying the foundation for the "energy T Y 3 4y
theory" of brittle fracture in solids. In order to explain the much greatef 9y Vs

observed tensile strength of thin wires or fibers as compared with those o
larger diameter, Griffith advanced what has become known as the weakest-1{iul
or "largest-flaw" concept. Tucker (1927), reporting his studies on concrets
columns, concluded that the coefficient of variation (standard deviation/
of the compressive strength varies inversely as the square root of the cros#
sectional area of the specimen. He presents the weakest-link theory, acco
ing to which the strength of a column m units long is the strength of the
weakest of m individual units, so that the average strength decreases with
the length. Harter (1977) offers an extensive discussion of the early 1it
ature regarding size effects.

‘Qrdef to illustrate this concept, we brief%y report an experlm;yt withthe
fd&ned cement paste published by Zech and Wittmann (1977). Inf 1g‘.:'01,1 =
tﬁﬁses at failure of two different test series are shown aslz ugclz it
] By applying Eq. 4, p can be calculate?; values of an . ,ree_
tively, are determined for flexural and tgn51le tests. The goo ig .
between the experimental data and the Weibull theory may be considere

an empirical verification of the latter.

- CHARACTERIZATION BY OTHER THEORIES
Weibull (1939) presented a statistical theory of the effect of volume on the STRENGTH

strength of materials, according to which, the probability of rupture, P
any given distribution of stress, o, over a volume, v, is defined by the
equation

e VWeibull theory, based on an empirical assumption such as Eq. 2, is only
a of the several theories that explains the size effects that have been
served in static tests and fatigue tests of materials and structures.

¢se other theories are briefly discussed in the following section.

v

1og(1—PV) = —-/n(c) dv (l'}

where n(0) is a function characteristic of each particular material. For
statistically homogeneous materials, the material function may be expressed
by the formula,
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where o , 0 , p are constants characteristic of the material (location, scal
u o

and shape parameters, respectively). Combining Eqs. 1 and 2 produces the vg

d fail bability obtained by Weibull
ume dependent failure probability obtaine ¥ eibull, > 1 ; . - 1 o 75 =00
0—-0 P 3
B = leewp gl 4 v (3) VOLUME, v, cm
o ;

Flexural and tensile strength of harden?d cgment
paste as function of volume. A solid line is
fitted using Eq. 4. (adopted from Zech and
Whittmann, 1977).

Fig. 1.

Size Effect According to Weibull Theory

An explicit relation between the strength and its size may be derived from
Eq. 3. Obviously, in estimating the strength, o, corresponding to any par-
ticular Pv’ the following relation must be fulfilled if two specimens with
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The Uniform Defect Model

Postulating that the inhomogeneities are uniformly distributed over the vol
ume of a material body, Freudenthal (1968) formulated a fracture model and
the probability of failure. The model, which he designated as the uniform
defect model, yields a gamma distribution function for fracture strength whi: &
shows size effect. This result, although obtained by purely probabilistic
reasoning that fracture is caused by a critical number of inhomogeneities,
gives rise to the statistical aspect of fracture; that of increasing proba-
bility of fracture with increasing volume (or area or length).

The Weakest-Link Concept

The assumption that fracture of the bulk specimen is determined by the local
strength of its weakest volume element implies that fracture of the specimen
is identified with the unstable propagation of the most severe crack from
this element, independently of the local strength of all other elements in
the path of the crack. 1In other words, the fracture process of the specimen
is identified with that of a chain, the links of which would be formed by the
volume elements; as the strength of the chain is that of its weakest-link, o
is the strength of the bulk specimen determined by its weakest—volume element .

Pierce (1926), who was the first to formulate the weakest-link model for fibes
strength, was also the first to recognize the close relation of this model to
the asymptotic theory of extreme values in large samples of a statistical popu
lation. The application of the weakest-link concept to a solid volume rather
than to a fiber was first proposed by Weibull (1939) who, however, arrived a
the associated distribution function (Eq. 3) by a purely heuristic argument
unrelated to the asymptotic theory.

Freudenthal (1968), from the logical assumption of an extreme distribution of
the largest cracks in the volume elements combined with the weakest-1link,
derived the volume dependent distribution of the bulk strength. The distri-
bution thus formalized is identical with the distribution proposed by Weibul!
(Eq. 3) and, therefore, exhibits size effect.

Extreme Value Theory and Strength of Materials

The statistical distribution in Eq. 3, introduced by Weibull, is also known
as the third asymptotic distribution of smallest values. The Weibull distri-
bution is only one of the three "extreme value distributions'" discovered by
Fisher and Tippet (1928) and later discussed more completely by Gredenkov
(1943). How size effect is manifested in extreme value distributions is dis-
cussed in the following section.

When one considers the problem of fracture in its most general setting, the
strength of a piece of material is clearly determined by its weak points of
stochastic strength and location distributed completely at random over the
material. From a statistical point of view, this problem leads to the distri-
bution of the smallest value in large samples. Such distributions form the
family of extreme value distributions for minima. Using the distribution
function of the smallest value, Leadbetter et al. (1983) formally derived the
three types of extreme value distributions. Two of these distributions (Type
and Type III), along with their means and standard deviations, are listed in
Table 1. The results in Table 1 clearly show that the mean strength m, is a

b
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function of the size % of the material, a further proof thét s%ze‘effect is
# natural phenomenon of materials whose strength distribution is in agreement

with one of the extreme value distributions.

TABLE 1 Distributional Parameters Related to Length £

(a_l and b are scale and location parameters;
vy is Euler's constant; and T stands for gamma
function). (after Leadbetter et al., 1983)

Initial Distribution Mean Strength, m, Standard Deviation, Si

fype I: double exponential i a_l(y Wb 0 a—l m
x /6
F(x) = 1 - exp(-e™)
= -1

fype IIIL: g 1/e)

Weibull distribution o =

N 4 grlilieg lr(l + %) ’ 1/2

o
F(x) = 1 - exp(-x"), x>0 I‘(l o %) T <1 % E)

the "Classical Bundle'" Model

#elaxation of the weakest-link concept, to the extent that instability of the
sritical flaw size is no longer assumed to lead Fo'fracture of the bulk spzc—
imen, gives rise to a material model in which critical crack can be itOEpih
before it propagates from local scale to bulk scale. The fFacture's rengt

of this classical bundle model, as well as of the bulk.speclwen Vhlch 1t.1s”
designed to represent, is given by the forces uqder which a '"chain ¥eact10n_
process of consecutive filament failures resultlng.from t?e succe551vef?zei
load carried by the surviving filaments leads to final failure of all fila

menls.

In the case where the total load is distributed equally over all rem%lﬂlng1945)
wnfailed parts of the material (equal load sharing rule or ELS?, Danlelsb(
showed that the average strength is independent of n (whe?e n is the number

of filaments in the bundle) and the variance of strength is an inverse f;nc—
tion of n. Freudenthal (1968) noted that the above trenqs afe n?t usual yh
found in tests leading to brittle fracture, a finding w?lch 1mp11§s that'the
bhundle model may be more applicable to nonbrittle.(ductlle) @aterlals whic
undergo large strain preceding failure than to brittle materials.

Nonbrittle Materials

If a material is (stochastically) nonbrittle, the strength of the whole 1slgot
equal to the strength of its weakest part. Different strength modgls cgu

be proposed here; for example, the stochastic strength Todel.formallzed lord
concrete (Mihashi and Izumi, 1977), the bundle model w1t§ either equal 93
sharing or local load sharing (LLS), whereby the stress is concentrat?d in

the immediate vicinity of failed fibers (Harlow and Phoenix, 1978; Smlth,-l’
1980). According to Mihashi and Izumi, the expression of fracture probability
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for b;ittle materials is quite similar to that assumed by Weibull yieldiny
identical size effect relationship (see Eq. 4); however, the size effect {.
less pronounced for nonbrittle materials, as shown in Fig. 2. For purposc
?f comparison, the size effect relationship of Weibull, LLS, and ELS modc! .
is ?150 given in Fig. 2. Suffice it to point out that nonbrittle material-.
exhibit much less size effect than do brittle solids. This finding is in

general agreement with that of Argon (1974). Another interesting result o
the Mihashi study is that the scale effect in cases of tensile fracture ma
be different from that in cases of compressive fracture. :

?he bundle model, especially the ELS and LLS concepts, is applied primaril:
in tﬁe study of composites wherein bundles such as groups of "filaments"
physically exist, a topic which will be discussed in the following section.

T2

Strength Ratio O_i/
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¥ 2
®® Veibull, p = 12.0; ¢ = 03 g 9.2 N/mm“ (Zech and Wittman, 1977}
X Weibull, = 8.0; = e = 2

ibu ?977§ 03 o, 2.7 N/mm”; 9 = 9.2 N/mm~ (Zech and Whittman,

[ LLS Rule, oe 8.0; k = 3.0; k signifies the number of fiber
failures required for bundle failure (Smith, 1980)

O—O LLS Rule, p = 12.0; k = 3.0 (Smith, 1980)
+—+ Stocastic Model, p = 11.0 (Mihashi, 1977)
A—A ELS Rule, (Glicer and Gurland, 1962)

Fig. 2. Influence of volume on strength.

Composite Materials

We now consider a composite material consisting of high strength, high stiff-

nesst brittle fibers aligned in parallel, embedded in a low-stiffness ductil.
matrix compound, to which is applied a tensile stress in the axial direction.

Harlow and Phoenix (1978) and Smith (1980), employing the LLS concept, con-
cluded that both the bundle and composite are weaker in median strength than

s aphed in Fig. 2.

calion.,
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ingle (short) fiber. An approximate relation conjunctured by Smith is
The size effect exhibited by this model conforms to the

41ty obtained by Wright and Iannuzzi (1973).

~ liffect in Fatigue
. 1lect of size on fatigue strength is a complex problem. It frequently

.-unds both upon structural changes in the material and upon the "statisti-
izne effect." TFreudenthal (1946) pointed out that the size effect on the
i initiation stage is opposed by a size effect in the crack propagation
(at equal rate of propagation, the small cross section will be destroyed

rapidly); the resulting size effect depends on the relative magnitude of
iwo opposing effects. For these and other reasons, weakest-1link theory

.. nwot apply in its entirety. As Freudenthal pointed out, the specimen
tipes with time, and its distribution of strength due to flaws also changes
that any essentially static approach which uses the weakest-link concept

‘hout modification leaves out certain features of the process. Weibull

1) concluded, however, that the weakest-link concept, initially intended
i cxplanation of size effects in brittle materials, is applicable to the

. ipuc strength of an arbitrarily assigned life N (cycles) but not to the

tiyue life. When crack initiation occurs mainly on the surface, the sur-—
.« area, and not volume, is the appropriate 'size" to be taken into consid-
An explicit relation for the ratio between the endurance limits of
, 1 lawed specimens of cast steel with different stressed volumes (v) has

~..n proposed by Kazinczy (1969):

b 1/p + n/p
1 2 (5)

.1 p is the Weibull shape parameter for the material; n is obtained from

. size distribution of defects, and p is related to their notch effect.
.rnl Russian researchers have studied the size effect on fatigue strength
leel in seawater and other corrosive media; corrosion affects small-di-

~1c¢r specimens more severely than large-diameter ones, so the size effect
ble opposite in direction to that observed in air.

CONCLUDING REMARKS

statistical theory of the size effect on both static and fatigue strength
heen well developed; but other theories, especially energy theory, must
vnthesized with the statistical theory in order to attain a comprehensive
.ory which will explain more of the existing phenomena. Experimental re-—
It on the size effect on both static and fatigue strength of the conven-
{.mal structural materials (such as metals, wood, and concrete) abound in
.- literature; but such results for nonbrittle as well as the newer fiber-

. iulorced composite materials are inadequate.

it

.« Weibull distribution, as given by Eq. 3, fits most experimental results
Irittle materials. From a philosophical point of view, the difficult and
bt ful part of Weibull's assumptions is the idea of splitting the body into
wimber of elementary volumes, each of which possesses a strength independent
the strength of all other elementary volumes. The idea of elementary vol-
.« can be modified by assuming that the material consists of randomly dis-

. ibuted flaws. Fracture may develop from such a flaw and the stress which
mues a flaw to spread fracture may be independent of the corresponding
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stresses for all other flaws in the body. This concepf merits consideration
in future studies.
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