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ABSTRACT

imple formulas for the dynamic fracture mechanics parameters of a three-
peint elastic or viscoelastic bend specimen are derived by using the
Fimoshenko's beam theory. A numerical analysis is performed for a steel or
FMMA specimen impacted by a falling steel cylinder or sphere. The results
re compared with those obtained by using the formulas which were obtained
previously using the Euler-Bernoulli's beam theory, and the effects of rota-
gory inertia and transverse-shear deformation of specimen are discussed.
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INTRODUCTION

A variety of works (e.g. Bush, 1970; Costin and co-workers, 1977 ; Shoemaker
snd Rolfe, 1969; Turmer, 1970) has been conducted to measure the dynamic
fracture toughness K74 of materials. However, the standard procedure for
K14 determination has mot been established. The main difficulties in the
test would come from the fact that the inertia effects influence the stress
_state in the specimen and the quasi-static stress estimation of the dynamic
stress intensity factor leads to erroneous results (e.g. Aberson and co-
workers, 1977; Kalthoff, 1982).

Because of the complexities in evaluating the interactions between the crack
__and the boundary of the body, the existing analytical solutions have re-

stricted applicability to specimens of finite dimensions. Although the time
variation of the fracture mechanics parameters of the specimen can be comput-—
ed by the finite element method (e.g. Aoki and co-workers, 1978), this method

requires a large computer time and is not appropriate to use in material
testing.

in a previous paper the authors (Kishimoto and co-workers, 1980) derived a
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simple formula for the dynamic stress intensity factor X7(t) of an elastic . 5 d (6 LA il

three-point bend specimen by making use of Nash's solution (1969) for a #Mps. (5) and (6) the value of D is determ

notched Euler-Bernoulli beam. The purpose of the present paper is to devol- D 2(1 - \)Z)W V(a/W) /T (7

op an improved formula for the dynamic stress intensity factor by taking ac-
count of the effects of the rotatory inertia and the shear deformation of
the specimen. The derivation of simple formulas for the dynamic fracture
mechanics parameters of viscoelastic solids is also intended.

H#eturning to the dynamic equation (1), we next analyse the eigenve?tors and
#igenvalues. Assuming the solutions to the homogeneous equations in the
orm;

uy(E,%) = Y(£)eIWE | Y(E,2) = ¥(®)eft (5 = /D) (8
SIMPLE FORMULA FOR DYNAMIC STRESS INTENSITY FACTOR
nd solving the resulting differential equations by using Laplace transforms

Cracked Timoshenko Beam [#see Huang (1961) for references], we finally obtain the normal modes Y (&)

F(t) B and Y, (), and natural frequencies wpy:
We consider the cracked three-point J/ ~ bmBm brom
bend specimen as shown in Fig. 1, where Ym(E) = opcos 5 sinbpopmE - Bycos 5 sinbpBmt (9a)
O-x,y is the Cartesian co-ordinate sys-— X b bmom
tem. The coupled equations for the de-  ° l -ui i ¥Ym(8) = Z—)Sﬂ {(aé—q»zr)cos mZBm cosbyomE = (B% - ¢*)cos 5] cosbpBnE}  (9b)
flection Uy and the bending slope Y of / N 1
the Timoshenko beam subjected to a con— - (@< £<"2’)
centrated load F(t) are given by S and
3% y _ bm /E{ (9¢)
pagzt = 5341 F) 6(E-D  (a) 52 /o4
5% " Fig. 1. Three-point bend specimen.
Vg Lo 2
Plms B 9 3E (1b) = I/(4S?) (10a) q® = EI/(kGAS?) (10b)
where 4 and I are the cross-sectional area and the area moment of inertia of a2 N T 3P 2,.1/,
the gross section, respectively, p is the density, & is x-co-ordinate normal- my o (") ¥ [ —Z;) + (4/bm)] (10c)
ized by the span length S, and §(E) is the Dirac delta function. The bend— g2
ing moment ¥ and the vertical shear force @ are expressed as mn

Ju is the mth root of the following characteristic equation:
Ll 5‘@% (2a) Q= kGA%—agﬁ ) (2b)

where F and G are the Young's and shear modulus, respectively. For a rec-
tangular cross section, the shear coefficient k is given by 10(1+v)/(12+11v)
(Cowper, 1966) where v is the Poisson's ratio. Following Nash (1969) we con-
sider the influence of the crack by specifying ¢ as

I il l+r2b,%(f3,f,—61r%) tanbmem i 1+Y‘2b7721 (uf{%_q%) tanbm“m =0 (11)
S b 2 bmQym 2
2(By=0pm) mm

1

In case (q2+r2) < [(qz—r2)2+ (4/b3)1 /2, Oy, becomes imaginary qL'xantity. Hc‘)wf
ever, Eqns. (9a) and (9b) can be transformed to the real equations by making

1 use of the relations cosjx=coshx, etc.
® =1/T + (D/S)S(E - o7, 3)
With use of the orthogonality condition of the normal modes given by
To determine the coefficient D, we analyse the static deflection at the mid-
span, uys(l/Z). By solving the time independent version of Egn. (1) under
the following boundary conditions

1
j (B En(E) + 1% (E)V,(E)}AE = O (nAxm, ry=1I/A) (12)
0

the displacement of the specimen subjected to a ccacentrated load F(t) can be

[”y]€=0,l =0, [3111/85]&-:0’1 =0 %) expressed as

’ = 5, t :
we obtain wEt). = T ZueE> _’77% F(1)sin{wy, (¢-7) }dT (13)
s 2 WS
1, _ FsS 12ET FgDS m=1 0
“ye Q) = ZgEr N * s t 1z ) vhere v
2
The last.term of the above equation corresponds to the displacement due to Wy = 20pA j [Y,%(E,) + rg‘y,%(i)]dg (14)
introducing the crack Acpaeks which has also been obtained by G-compliance 0
thod . . .
W S = 2 The impulse response function for deflection at the midspan is thus given by
Doygek = Lovy FSWSZV(a-/W) (plane strain) (6) © y2
8ET m(1/2) . 15
hg(t) = z T sinw,t (15)
where V(a/b) is the shape function (Tada and co-workers, 1973). Thus from WS

m=1
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Dynamic Stress Intensity Factor

Since the dynamic stress intensity factor is proportional to the magnitude
of displacements in the vicinity of a crack-tip, we set

; t
KI(8) = kouy (3, ©) = Ke J F(DHE(¢-T)dT (16)
0

where the proportional factor ke can be determined by the static solution,
because the displacement field near a crack-tip is similar to that for the
static problem.

The static deflection at the midspan can be expressed as

t'

1 2 T

Uy (G, t) = F(t) . Uim J on RS (t'-T)dt 7)
tls0 /0

Thus, the proportional factor ke is obtained as

ke = Ks/uzjs(l/z, t)

T In@/2)
= Ks/F (D)) —=5=— 18
s/ (’)HZ1 el (18)

where Kg represents the static stress intensity factor and is given by
K = 3SF(t)vma \(a/W)/2BW* (19)

where A(a/b) is the shape function (Tada and co-workers; 1973).

VISCOELASTIC PROBLEM

Impulse Response Function of Viscoelastic Beam

According to the correspondence principle, the Laplace transform of visco-
elastic solutions can be obtained directly from the transform of elastic
solutions by replacing the elastic moduli with the transform parameter multi-
plied transform of the appropriate viscoelastic relaxation functions if the
type of boundary condition prescribed at points of the boundary remains in-
variant with time (Cristensen, 1971). Thus, assuming that the solid can be
modeled as a three-parameter linear standard solid (Fig. 2) and that Poisson's
ratio is constant, we obtain the following impulse response function of the
viscoelastic beam from Eqn. (15):

w y2 = 1
Rot) = 1 ———)’”tf/lréz- (Cime T1mC 4 &7 P2 (CopcosPamt + CamsinPamt)]  (20)
m=1 i

where Cy;m, Coms Cism> Pims> Poms and Pyp are constants determined by the values
of Ey, Fp, W, and w, (Sakata and co-workers, 1980). It is noted that Y,(1/2)
and Wy are the same as in elastic case, while w; is defined by

bu [T
wn = g2 f od (21)

where E' = E1E»/(E1+E2) .
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#fmple Formulas .
1t has been reported by the authors 2
{Aoki and co-workers, 1980) that E1
ihe near—tip fields of the visco-
slantic body are characterized by
three parameters: the stress
tntensity factor Kr(t), the strain
tntensity factor TI(Q), and the 1/u
energy release rate J. Since the
strain intensity factor is propor-—
tfonal to the magnitude of dis- Fig. 2. Model of three-parameter
placements near the crack-tip, we solid.
asel

4 - (22)

Tr(t) = kv F(T)hB(t—-'r)dT

0

where the proportional factor ky is determined by the static analysis as in
the elastic case.

Owing to the elastic-viscoelastic correspondence principle, the static solu-
{lon for the deflection at the midspan is derived from Eqn. (17) as

o
Ym(1/2)

1
u =,t) =
ye (5 by WS

t
E (F(£)J(0) + j Fe-1 228 g} (23)
Ym

0

where J(t) denotes the creep compliance and is given, in this case, by
El+E2_ j;_e—uEzt (24)
E B2 E,

Since the static stress intensity factor in viscoelastic problems is also re-
presented by Eqn. (19), with use of the relation (Aoki and co-workers, 1980)

J(t) =

t
Tr(E) = ) KI(E)I0) + J K7 (t-1 3 ar) 6290
0

the static strain intensity factor can be expressed as

- (ks b -2 g (26)
Ts = “ gy F(£)J(0) + J[ F(t-1)S 5 dt}

0
Thus, we obtain the following result from Eqns. (23) and (26):

kv = Ts/uys (l/zat) =
0 2
3 Lty 850 Ya(1/2) 27
= 2 = =2 Yma A(a/W) ————
2 E' BW? g mzx W W2
The dynamic strain intensity factor and energy release rate are given by
“ ()
Kr(t) = 2{Tr(t)u(0) + '[O -t} Hess dt) (28a)
J = @-v)Tr(t) Kr(t) (plane strain) (28b)

where u(t) is the relaxation modulus for pure shear (Aoki.and co-workers,
1980). Thus, we can estimate the dynamic fracture mechanics parameters
after evaluating the impact load F(%).
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NUMERICAL EXAMPLES

Numerical analysis has been performed ‘?’
for a steel or PMMA specimen impacted 0
by a falling steel cylinder or sphere

(Fig. 3). For the purpose of comparison,

computations were also performed by using B

the formula which was derived by the
authors (Kishimoto and co-workers, 1980)
using Euler-Bernoulli's beam theory. Ny

In order to evaluate the dynamic frac-
ture mechanics parameters, the contact
force between the specimen and impactor ["E e =
is estimated by applying the Hertz's / N
theory to the local deformation near the S

contact point. With %4(¢) and hg(t)

denoting respectively the impulse re-

sponse functions of the impactor and

specimen at the contact point, the Fig. 3. Falling cylinder and
force-displacement relation may be specimen

expressed as (Goldsmith, 1960) (5=80mm, W=20mm, B=10mm,
r9=10mm, R=100mm. L=1.5
or 0.75m).

F() = ke[vot-na(&)-ng(#)17?  (29)

where

t t
na(t) = J F(T)hy(t-T)dT (30a) ng(t) = j F(T)hg(t-T)dT (30b)

0 0

Here vy is the initial relative velocity and ke is the spring comstant of
the non-linear restoring effect in Hertz's contact theory. The impulse re-
sponse functions of a rigid body and that of a slender rod were used for
h4a(t) of a sphere and cylinder, respectively (Endo and co-worker, 1981).

In solving Eqn. (29), time increment of 2.5 Us is adopted for the cylinder
of 1.5m length and sphere, and that of 1.25 Us for the cylinder of 0.75m
length. The first 22 and 17 normal modes were retained for the cylinder and
specimen, respectively. Numerical values employed are listed in Table 1.

TABLE 1 Numerical Values Used in Computation

Steel PMMA
E= 206 GPa F1=14.58 GPa p=1.15 Mg/m®
p=7.8 Mg/m® Ez=45.9 GPa v=0.38
v=10.3 U =148 (GPas)~’

Figure 4 shows the impact force generated by the falling sphere of 15 mm
radius. It is found that the magnitude of the force and the contact time are
affected by the rigidity of the specimen. The impact forces by the falling
cylinder with various impact velocities are shown in Fig. 5. The magnitude

of the force increases with the impact velocity, while the contact time is
almost constant.
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The time variation of the dynamic stress intensity factor of the steel speci-
men and the dynamic strain intensity factor of PMMA specimen are respective-—
ly shown in Figs.6 and 7, where the results obtained by the simple formulas
based on Euler-Bernoulli's beam theory are also depicted. ‘It is noted that
the fracture mechanics parameters are overestimated unless the effects of
fotatory inertia and transverse-shear deformation of specimen are considered.

8 r Falling cylinder
vo=3.0m/s L=1.5m
= .
= PMMA specimen
S 6l a/W=0.3
- Falling sphere e T moshenko
=6 R =15mm L ey
= vo=2.0m/s ,Lc_:
= Steel a/M=0.3 21
s 4 i -
g Timoshenko 9
[ beam =
i i
0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5 6
Time msec Time msec
Fig. 4. 1Influence of specimen Fig. 5. Influence of impact speed
rigidity on impact force. on impact force.
307 o #a T Falling cylinder
Falling sphere S8 =1.5m
R =15mm Q L o
p = 101 - >~ PMMA specimen
4 vo=2.0m/s : i
20+ Steel specimen it Tinoshonkn
A= s g Bl iy ol R0 e Euler- ;
Timoshenko Bl e \ Bernoulli
------ Euler- el ol
10} . Bernoulli = s
\ A ,.’: p_H
P 2
W 2
i s
QHam R 8\ o0 &
vV Tfime ) msec
Ll 5
“J’ Y Time msec
Fig. 6. Time variation of dynamic Fig. 7. Time variation of dynamic

stress intensity factor
of steel specimen.

strain intensity factor
of PMMA specimen.

CONCLUSIONS

An improved formulas for the dynamic fracture mechanics parameters_of a three-
point elastic or viscoelastic bend specimen were derived by employing ?he i
Timoshenko's beam theory. Numerical studies suggest that the rotatory 1n§rt1a
an& transverse-shear deformation of specimen should be considered in esti-
mating the fracture mechanics parameters.
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