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ABSTRACT

The paper discusses a methodology for the fatigue safety evaluation of raii-
road freight cars. The data collected in the field for a car under a typi-

~ ¢al normal operating environment was used in the study. The uncertainty in-
volved in the method of fatigue damage evaluation, method of stress analy-
81s and field data were considered in this study. The fatigue reliability

of a given component was calculated using a Weibull probability density func-—
tion for the fatigue life of the component. The method was applied to a 70-
ton box car. The results indicate that the failure probability for certain
components is significant.
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INTRODUCTION

Railroad freight cars are quite vulnerable to damage causes by fluctuating

_ stresses in their components. Generally, these fluctuating stresses arise
due to track geometry, and in particular from track irregularities [3].

Under normal operating conditions, where the intensity of induced stresses

is within allowable limits, the number of cycles of fluctuating stresses
plays a major role in causing failure. Each stress cycle produces a certain
amount of damage in a given component. This damage accumulates until a
fatigue failure takes place. At this stage, the accumulated damage reaches a
critical level. Understanding the behavior of a freight car and evaluating
this critical level is an essential part of the design for "safe operation”
in the freight car industry. Since fatigue failure is ultimately unavoid-
able, the term '"safe operation,'" as used herein, is only meaningful when a
fatigue life is specified for a given component. Furthermore, because of

_ the uncertainty in fluctuating stresses and the mechanical properties of the
~_ component, the safety of the component can only be represented on the basis
of a percentage probability, by describing the chance that the component will
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be able to reach its specified fatigue life.

This paper describes a probahilistic approach, which could be used for safe-
ty evaluations and fatigue life predictions of freight car components.
Various sources of uncertainty in the stresses of a component are described.
Actual field data for the forces deyeloped in various components of a
freight car, that were collected under normal operating conditions, are used.
The formulations are applied for fatigue safety analysis of the major com-
ponents of a 70-ton box car.

PROBLEM DESCRIPTION

1. Source of Stress Variation in Component; Stresses, induced in a given
component of a freight car, show time variations under normal operating con-
ditions. The main source of these variations is track irregularities L3’ 50
which result from construction errors, or due to deterioration of the track
structure. These irregularities are in the form of gage, aligmment, and pro-
file variations, or their combinations. During the operation of the freight
car on such a track, the carbody behaves like a dynamic system with several
degrees of freedom, each representing a particular type of motion, such as
longitudinal, vertical and lateral displacements, or roll, yaw and pitch
motions.

Stress evaluations in a given component can be conducted by performing dy-
namic analyses [3, 5]. These analyses are generally complex and require
certain approximations for idealizing the track irregularities. A static
analysis can be utilized, provided relationships between carbody forces and
track geometry can be established. In this case, the stresses can be deter-
mined from the carbody forces by using a conventional static analysis. 1In
the absence of the carbody forces vs. track geometry relationships, field
data collected for carbody forces [8] may be used. These data, however,
should be analyzed and their statistical variations calculated.

2. Field Data for Carbody Forces: Such data are currently being collected
by the Association of American Railroads (AAR) [8]. The forces applied on
the bolster, center plate and side bearings of a 70-ton box car, under typi-
cal operating conditions, have been collected [9]. The load range for. each
of the force data shows a variation in the carbody forces. The force data
comprises necessary information for stress analyses. However, a statistical
analysis of the data is needed before performing such analyses for ‘the force
variability and statistical distribution. Typical data for a 70-ton box car
are shown in Figs. 1-3. Each figure indicates the percentage occurrence of
the load ranges. A typical probability density function to fit the data in
each case is also shown. With a 0.05 significance level [2], both beta and
Rayleigh distributions fit the data. 1In Figs. 1-3, the beta distribution is
shown for each set of data. The advantage of the beta distribution is its
finite "tail."

3. Stress Analysis: The carbody can be analyzed using a conventional stress
analysis approach, such as the finite element method. However, the applied
forces are random variables, as described by one of the probability density
functions shown in Figs. 1-3. If we consider the carbody to be an elastic
system, with linear stress—strain material behavior, then the stresses can be
calculated in terms of random applied forces. The linear material assumption
for the carbody will lead to identical distributions of stresses and strains.
In fact, for a beta force distribution, the calculated stresses will also
have beta distributions with different parameters of distribution. The ob-
jective is to determine a critical random stress, Q, in a given component
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that causes fatigue failure.

In this study, the stress analysis of the carbody bolster was performed, us-—
ing a three-dimensional finite element idealization, as shown in Figure 4,
The bolster support changes as the car rocks. Therefore, different boundary
conditions were considered in the finite element idealization. Figure 4 re-
presents only a typical idealization. Furthermore, because of three-dimen-—
sional analysis, each point on the bolster is subjected to multiple stresses
and requires a failure criterion for fatigue life evaluation. Generally,
failure criteria based on maximum shear stress or maximum effective stress
are used [3], however, their applications in this case is complex, since Fhe
applied stresses vary randomly. Use of these failure criteria would require
additional computations for evaluating the probability of the maximum effect-
ive stress or maximum shear stress. For simplicity, the failure criterion,
based on principal stress [7], was used in this study. It was assumed that
the probability distributions derived for the applied forces can also be used
for the critical principal stress, Q.

BASIC FORMULATION

For a given component, the critical stress Q is a random variable, defined
with a probability density function fy. Using the Miner Cumulative Damage
Rule (6], the damage produced in the component, due to one cycle of a
stress Q = q, is 1/N(q), where q is a specific value of the random §tress Q
and ﬁ(q) is the average number of cycles to failure, if the stress is q.

For M; cycles of qj, the damage is M;/N(qi), and thus the total damage d will
be:
k -—
a= 3 M /N 1=1,2,3, ~ ~ k 1
1=

Since M. is a random variable, d will also be a random variable and the ex-
pected damage is:

ﬁi/N(qi) (2)

I o=

k
E@) = E[ ] M /N(q)] =
i=1 i=1
where M, is the expected value of M,. The critical stress of the component
is a continuous random variable. If n is the average number of cycles
of the random stress Q to failure, then for a particualr stress, such as q,

Mis n f . Theoretically, Q may have any value from O to «. Equation (2)
becomes Q [l]:
@ = | [3 fo@/A@] aa )
o

Fatigue failure occurs when E(d) approaches unity. Thus at failure, n from
Eq. (3) is:
(e}

5 10 j £y @ /@] da )

o

Since ﬁ(q) is the average number of cycles to failure for Q = q, ﬁ(q).may
be obtained from the stress vs. number of cycles relationship. If this
relationship is written as:
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Substituting Eq. (5) into Eq. (4), we get:

oo

n=c/ f qb fQ(q) dq u
(o]

where ¢ and b are constants. Eq. (6) gives the average number of cycles o
random stress Q to failure (i.e., the expected fatigue life). A similar .
lationship was also obtained by Mohammadi and Garg [5] for a freight car
dynamic system under stationary Gaussian random excitation.

The expected fatigue life n may be used to determine the failure proabilit:
of a component for a desired life of n. In fact, the fatigue life n of a
given component is a random variable with an expectation n. Using a
Weibull probability density function for n, the probability that the compo
ent will survive n cycles of random stress Q is [1]

L(n) = exp{-[(n/n) r(1+a)]l/‘5}

T

where L(n) is the probability of survival for n cycles, or the reliabilit:

for a fatigue life of n, I' is the gamma function and § = Q- , in which
Q. is the uncertainty in predicting fatigue life of the component. Accord
ing to Ang and Munse [1], this uncertainty depends upon: (i) the uncertain

ty in the stress vs. number of cycles relationship, (ii) error in the Min.
Damage Rule and the variation in applied stress. 1In the case of a freigh
car . also depends upon the uncertainty in the finite element idealization
and failure criterion used in the fatigue failure analysis.

NUMERICAL ILLUSTRATION

Figure 4 shows the finite element idealization of the body bolster for a /0
ton box car [8]. The data shown in Fig. 1-3 were used for a fatigue anal:
sis of this structure. After performing the structural analysis, the criti
cal stresses were calculated, using principal stress failure theory. The
probability distribution of a critical stress was taken as beta, whose para
meters were calculated from the parameters of the applied load distribution.
The fatigue safety analysis was then performed for a number of standard
details [1], with or without welds. For each detail an appropriate stress
vs. number of cycles equation [1] was used. Furthermore, the uncertainty
QN’ for each detail was calculated from the information given in Referencc
[l]. In Q_, the uncertainty in the method of stress analysis and failu
theory was also considered. The expected fatigue life for a cover plate
weld was 3.618 x 10° cycles. This gives a fatigue reliability of 0.9998
(i.e., probability of failure of 2.0 x 10 *) for a performance life of
2 x 108 cycles. For a simple butt weld detail, the expected fatigue life
was 1.08 x 10° cycles and indicated a fatigue reliability of 0.9993 (i.e.,
probability of fatigue failure of 7 x 10™%) for 2 x 10° cycles. The result:
and the corresponding details are summarized in Table 1.

SUMMARY AND CONCLUSIONS

A method for the safety analysis of railroad freight cars for fatigue fail-
ure was presented. The method used data collected in the field for the ca:
to determine its performance, in terms of the fatigue reliabilities of the
components. For a 70-ton box car, the analysis showed that, for 2 x 10°
cycles, the fatigue failure probability may be as high as 7 x 10™".
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i+nouph this number may appear to be insignificant, it is considered.to be
vt 6.1 in a safety analysis. This number represents a chance of failure

i.. .ne component only. The contribution of such small pr?bapi}ities from
3.1 a1 components of a car could ultimately add up to a significant %evel.
.. heimore, the failure probabilities calculated herein may be used in de-
sts. processes, based on the designer’'s intuitive judgements. If the

w1, (i.e., 7 failures in 10,000 identical components), in the j?dgement
i design engineer, is considered to be high, a revision in design would

b necessary.
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TABLE 1. NUMERICAL ILLUSTRATION

Expected Life Probability Failure

Detail = !
n (Cycles) For 2x10° Cycles
h../
£ B A\ < 3.618x10° 2.0x10™ "
WELD
- e g o
( e 1.08x10° 7.0x10
WELD
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Fig. 4 A Typical Finite Element Idealization






