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ABSTRACT

Numerical determination of J-Integral by finite element path integration technique
can be extended and applied to situations such as : thermal strains (area term), steady
state creep (c* -Integral evaluated from velocity fields), mixed modes in linear elastic
fracture mechanics (Jy, Jyp). Path independent quantities are calculated and can
be used to correlate crack initiation or growth phenomena in these situations.
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INTRODUCTION

This study is concerned with two-dimensional finite element determinations of
J-Integral and extensions in various situations. After a mechanical analysis performed
with INCA code (CASTEM system), a post processor is used to calculate line and
_area integrals. Three situations are considered : a longitudinally cracked tube
subjected to thermal loading in the elastoplastic regime (J determmatlon), a centre
cracked plate made of a creeping material under uniform tension (et determination);
a slant edge crack in a plate subjected to tension or bending in the elastic regime
(J, Jqp determination). :
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EVALUATION OF J-INTEGRAL IN THE PRESENCE OF A TEMPERATURE

FIELD

If we consider the case of a 2D fracture mechanics analysis in the presence of a

thermal strain field :

<t (6-06pR) ¢
= a — e
ij R/ %ij

a :dilatation coefficient
© : temperature field

eR : mean temperature

it is easy to see that the usual expression of J loses its fundamental path independence
porperty, when evaluated with the mechanical strains eir.“ in the energy density
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In order to.restablish path independence it appears necessary to add an area integral
to the previous line integral (Bui, 1978) :

Jd =Jd +ff a o 96

J o dx dy
JJA ii 9Jx

o~
)
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A :surface surrounded by the contour

This ex'pression is valid for a material which is temperature independent; if the
properties (Young's modulus, stress-strain curve, dilatation coefficient) are strongly
temperature dependent, relation (2) can be generalized in the following form :

m
_ _ da _ _Wel dE i) 36
JmJ ";[/A [[a+(9 eR) —_de aii E—_'dg' oggdé]'& dA (3)

wel : elastic part of mechanical strain energy density

Numeriqal application was conducted under temperature independent material
assumptions, which already allows a large number of industrial applications. The
finite element analysis of a longitudinally cracked tube (Rj = 0.05 m; a/t = 0.5; t/R;
= 0.2) was performed with isoparametric 6-noded triangular and 8-noded quadrangula;
elements in plane strain situation.

Material properties are :

E = 200 GPa v =0.3 a =105 k-1
' Stress-strainlaw (9> 04 = 200 MPa) e/e, = (tr/ao)5
Temperature field is given by a logarithmic radial distribution (Rj< r < Rp)
Log (r/Rj)
Log (Ro/R;)

O() = o6
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The numerical evaluation of relations (1) (2) is carried out in the following way :
_quantities such as stresses or displacement gradients are determined at each nodal

point of the contour; line integral is evaluated by using linear interpolation between
two consecutive nodes and area term is evaluated by Gauss point technique. A linear

‘plastic calculation was carried out for a O, = 0.015. Results thus obtained are

plotted on Fig. 1 where the importance of the surface integral is clearly seen (contour
radius corresponds to a circle of the same area). The selected value can be chosen
s : J = 410 kNm™1. In the termoplastic regime analysis was conducted in seven

tegular temperature steps from O, =30 K to 6y =210 K; incremental plasticity

¢quations based on Von Mises criterion and normality rule are solved by using a two
level iteration scheme of initial stress type. Numerical results are given in Table
1 and plotted on Fig. 2 for the last step; one can notice that path independence is
well maintained. The contribution of the area term can reach 30% of the total value
for the largest contour at the last step; the influence of plasticity on J-Integral

18 moderate in that case (see ratio J/Jg] in Table 1).

Table 1 Evaluation of J in thermoplasticity

6, (K) J (kNm™1) /el
30 0.16 1.00
60 0.67 1.01
90 1.61 1.09
120 3.27 1.25
150 5.41 1.32
180 8.19 1.39
210 11.4 1.42
JUKN/M) JOKN/M)
L = 15,

= without area term

0 L n
L = E + + + + ¥ + +
]
»n » »
- 10.
L »n L
= LA A - + . | = without area term
x a0
R(MM) | R(MM)
. x . " 1 i 5. N R SN @
0. S. 0. S.
Fig. 1 Thermoelastic results Fig. 2 Thermoplastic results
( 60 =210K)
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This small study shows the possible use of a criterion based on J to predict crack
initiation in the presence of thermal strains from a finite element point of view.
It can be applied for instance in the important case of a flawed structure subjected
to a thermal shock and material toughness Jqc ( tip) corresponding to the
temperature around the crack tip must be used.

NUMERICAL EVALUATION OF C*INTEGRAL FOR A CREEPING
MATERIAL

For a creeping material J can no longer be considered as a crack tip field parameter
because it loses its fundamental path independence property.. Begley and
Landes (1976) introduced the C*—Integral as a crack tip field velocity parameter :
A
c* :f(w*dy—T.g—;: 1))
2 Tre (4)
W = _/ o deé
(]

In the usual case of a Norton law € = Ag N, W* reduces to :

N+1
*="LA0' ; (5)
N+1

Dang-Van and Mudry (1981) demonstrated path independence of C*—Integra] in
the case of steady state creep ( ‘}ij = o) for a non-moving crack.

Numerical application was done on a centre cracked plate (crack length 2a = 0.1 m;
height 2H = 0.5 m; width 2w = 0.2 m) under uniform tension %ap (see mesh on Fig. 3).
Material properties are :

E = 200 GPa v = 03

Stress strain law €/eg= (trlzfo)13 9o = 400 MPa

Creep law e =AocN N=8 A =10"24h1Mpa—8

Finite element analysis in plane strain situation was divided in two phases : elastic-
plastic loading during which stress is gradually increased from gap = 20 Mpan
to o4, =260 MPa; creep phase where load is kept constant ( ogp = 260 MPa) during
three Eours. -

In relation (4) displacement velocity U is evaluated by finite difference of
displacement fields for two consecutive time steps : G=Au/ At.

The following results have been obtained : in the early stage of creep C* presents
a strong path dependence but this dependence tends to vanish when a steady state
is reached (see Fig. 4) and C* becomes constant (C* = 29 KN m~1 h-1),
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Fig. 3 Quarter of a centre cracked plate Fig. 4 (G path independence
A simple correlation is used by experimentalists to estimatg C* from crack mouth
opening rate measurements in the case of a CCP specimen (Taira and others, 1979) :
+ _ N-1 2
€ T ON+1 % net ® 6

0 het : averaged stress in the uncracked ligament

Our finite element results lead to §=0.074 mm h~1 which, by app_)lication. of relation
(6) gives C* =30 kN m~1 h~1. This value is very close to thej path integration result.
C*-Integral can also be evaluated with EPRI handbook estimation techmque.(Kumar
and others, 1981) through the following relationship deduced by analogy with fully
plastic J formula.

o] +
T hl(n_et>N L
w
2 ‘v 3
In our case hy = 1.68 and the application of relation (7) leads to Cc* =32 kN m~1 .h'-'l.
As the EPRI estimation procedure cannot take into account effects of plasticity

prior to creep phase, we consider that there is a good agreement between that
value and our finite element results.
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This study shows the numerical applicability of C*—Integral concept to fracture
mechanics creep problems in the case of a stationary crack when steady state is
reached. The results support a linear correlation between C* and the crack opening
rate 6 ; a good consistency was found with EPRI estimation scheme.

Practical use of C* values can be made through experimentally determined laws
of the following form :

a = f(C%

NUMERICAL EVALUATION OF (Jy, Jyp INTEGRALS IN A MIXED MODE
"SITUATION :

In the case of a 2-D mixed mode problem the use of dJ-Integral only does not provide
a method for determining separately stress intensity factors because J is a quadratic
sum of Kj and Kj;. A modified formulation introduced by Bui (1982) now permits
this decoupling.

If we consider two symmetrical part points M and M' with respect to the axis of
the crack, it is possible to construct the symmetrical part (mode I) and
antisymmetrical (mode II) of the displacement fields :

{ul = 12 (uy + uy) {uﬂ = 1/2 (uy- - uyp @

v = 172 vm - vy vil = 372 vy + vy
Associated elastic strain and stress fields must be separated in the same way. In

these conditions the two following line integrals can be defined :
—_— =

1T
A =f(wwl)dy-?. oul oy i =ﬁW(aﬂ)®-ﬁ.aLm) )
T ox T ox

These integrals are shown to be path independent and uniquely related to the
corresponding stress intensity factors :

K2 K2 g
JI=—E'—— JH=? J=3dl + 40 (g

Elastic finite element analysis was carried out on a plate with a slant edge cra:k
in plane strain situation (see mesh and geometry on Fig. 5).
Material properties are :

E = 200 GPa v = 0.3

Two types of loading are considered : uniform tension ¢ =100 MPa and bending
moment M  produced by a linearly  varying stress of magnitude
9 =6 M/b2 = 100 MPa.

Line integrals (Jj, Jqp) are evaluated on six circular contours surrounding the crack

tip; results concerning tension loading are plotted on Fig. 6. Numerical values

are given in Table 2 as the well as corresponding shepe factors :

K1 Kn
Fpp =

o ’7'_ a 0'"71‘8.
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These results are in good agreement with those published in the compendium of
stress intensity factors (Rooke and Cartwright, 1976).

Table 2 Mixed mode results

Iy (KkNm~-1) Bi (kNm~1) Fy Fr
Tension 0.980 0.229 1.17 0.57
Bending 0.425 0.072 0.77 0.32
JIKN/M)
J
1.0 |- bt A 1 + + +
L
0.5 -
g
12
- + + o+ + + +
| R(MM)
o. o 2 2 n s A 'S
0. 20.
Fig. 5 Slant edge crack in a plate Fig. 6 Results for tension loading

is major interest of the previous method for determining Kj and Kjj is to take
Z:i]:'antagje of path independence property of Jp ‘and I11» Wthl:l qoes not n.ecessnattz
a very refined mesh in the vicinity of the crack tip. Moregver it is easy to '1mplem<.en
in an already existing J-Integral evaluation code because it uses the same integration
_routines; it can also be generalized to thermal problems. . il
It is often important to be able to estimate Kj and Ky separately in many practica
cases such as directional criteria, mixed mode fatigue crack growth,...
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