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ABSTRACT

The experimental method of reflected caustics, which was primarily developed
to evaluate stress intensity factors for in-plane modes of deformation,was
recently extended to calculate mode-III stress intensity factors in
stationary cracks traversing isotropic plates submitted to antiplane shear.
In this paper the method was extended to deal both with stationary cracks in
orthotropic plates and propagating cracks in isotropic plates under mode-III.
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NOTATION

(xO,yO), (ro,%o) cartesian and polar scaling coordinates in the orthotropic
plate
% ,v.), (r_,9 ) cartesian and polar scaling coordinates fixed on the
s7s s’'s 8
moving crack tip in the isotropic plate.
(x.,yi), (ri,%i) cartesian and polar scaling coordinates varying for each
problem considered.

X,Y cartesian coordinates on the screen

U, Cg crack and shear-wave velocities.

\ displacement normal to the xy-plane.

zq distance between the specimen and the screen.

zg distance between the focus of the 1light beam and the
2% specimen.

as=[l—(U/Cs) 1 dynamic correction coefficient.

c4l> ©55 independent constants in the stiffness matrix.

}\m=(zo+zi)/zi magnification factor of the optical arrangement.

Ymax maximum transverse distance of the caustic curve from the
E% crack axis. ) ) )

a0=(c55/c44) ratio of shear stiffness in orthotropic bodies.
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Tons T shear anti-plane stresses.

Rz yz . .
Yxz® sz shear anti-plane strains.
G shear modulus
K s K (t) static and dynamic stress intensity factors in mode-III

ITT I1T 0

deformation.
INTRODUCTION

The optical method of reflected caustics was first applied to problems of
cracked bodies (Theocaris, 1970,1971) or other stress singularities
(Theocaris, 1973a,1973b) in stress fields subjected to an inplane mode of
deformation. In this case, the deformation in the normal to the plate
direction, developed because of the lateral contraction effect and/or the
variation of the refractive index along the same direction, deviated the
incident 1light in the vicinity of the crack tip and formed the caustic
envelope. Later on, the method was extended to the study of the distribution
of curvatures on plates and shells (Theocaris and Gdoutos, 1976) and stress
fields in non-cracked and cracked plates under bending (Theocaris, 1977,
1982).

For the case of anti-plane shear deformation of a cracked thick plate none
of the well-known optical experimental methods (photoelasticity, moiré, or
transmitted caustics) could give information for the evaluation of the
intensity of the stress- and displacement-field around the crack tip, since
it is wvalid that 0x=0y=0z=Txy=0 and only the out-of-plane shear stresses Txz
and Tyz are operative, which do not create lateral normal deformation.
However, it was shown that the method of reflected caustics was capable to
detect and evaluate the Kyyy-stress intensity factor and it was established
that the caustic formed by this type of deformation, is again a generalized
epicycloid curve (Theocaris, 1981),

Among the other applications of the reflected caustics, which were appearing
in the last decade, the case of a stationary crack traversing an anisotropic
plate under in-plane loading was treated (Theocaris, 1976), which presents a
great affinity with the caustics formed by propagating cracks in isotropic
media, (Theocaris and Papadopoulos, 1980). On the other hand, an appreciable
number of studies on dynamic fracture was investigated by this method. It
was found that in both cases of orthotropic static cracks and isotropic
dynamic cracks the shape and the size of the caustic curve formed on a
screen for in-plane deformation, differs considerably from the common case
of the isotropic static crack.

It remains to deal with the form and the size of caustics for stationary
cracks in orthotropic plates and propagating cracks in isotropic plates
under anti-plane shear and to evaluate the respective Kyyy-factors, and this
is the subject of this paper. It is also shown that a complete similarity
exists between the equations governing the latter problems if an appropriate
scaling coordinate system will be used.

DISPLACEMENT-FIELD NEAR THE TIP OF A MODE-III STATIONARY
CRACK TRAVERSING AN ORTHOTROPIC PLATE

Consider a thick orthotropic elastic plate, see Fig. 1, submitted to a conve-
nient loading for anti-plane deformation (see for instance the configurations
in pages 2.27, 4.10 and 5.1 of Tada, Paris and Irwin, 1973) and containing

a stationary crack aligned with one, say the Ox, of the directions of
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orthotropy.
The only non-vanishing stresses are

(1.1)

Txz  ©557xz ° Tyz i C44sz
and the out-of-plane displacement w satisfies the equation
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Fig. 1 A plate with an anti-plane shear crack and the viewing screen.

The near-tip displacement-field was given by Sih, Paris and Irwin (1965) in
terms of polar coordinates r and 9 in the physical plane

b g
9
e KIII<25> Re[(cos% - using)?] (2)
i L1
where c S
w= i(—§§> @)
Ca4
The displacement w, after some algebra, is expressed by
K i c Y Y
w(r,9) = ———il——rré[(cosz{) + —S—S—Sin:z%) —cos%:l 4)
i g 44

{ne 15 5ss)

The above equation may be reduced to its <sotropic counterpart when c44=055=G,
where G is the shear modulus of the material in any direction,

It is convenient to express the preceding relation in terms of the scaling
coordinates

= x = r,cos%, , yo = aoy = rosin%O 5 Z0 = x+iq0y (5)

*0 0 0

We may observe that
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(9 rysin %0\%
s \rocos %0 + > /
o
0
9 a2r2 <
cos %+agsin2% = 210
aerCOSZ% +rzsin2%
00 00 0
Then, Eq.(4) takes the following simple form
( / 2r0 ;i
w(r.,9.) =K R sin(9,./2)
0’0 7
III \nc44c55/ 0 @

DISPLACEMENT-FIELD NEAR THE TIP OF A MODE-III PROPAGATING
CRACK TRAVERSING AN ISOTROPIC PLATE

Att?ntion is now focussed to a thick isotropic elastic plate, submitted to an
antl—Plane deformation and containing a propagating crack wiéh constant
véloc1ty. It is assumed that the propagating crack expands at the Ox-axis in
Fig. 1. The moving coordinates x,y,associated with the crack tip,are related
to ?he static coordinates x'y' with the Galileian transformation’x=x'—ut

Yy’ - The near-tip displacement-field were given by Sih (1970) in terms ;f
movlnf—pol?r cogrdinates r and 9 in the physical plane. The same expression
was also given Nishioka an i i i i
0 o h aZd %S’ E d Atluri (1983) in terms of scaling moving-polar

K (&) {Zr \g

11T s 1
W = == G,
G = a 51n(%s/2) (8)
where
tand = o tan$ and =r[ 2 in28]%
- o r, = rlcos %+a531n 9] 9

In the above relation the dynamic or time-dependent Kypr(t)-factor is an
unknown scalar quantity, only determined by experimental methods.

THE REFLECTED CAUSTICS IN STATIONARY AND DYNAMIC CRACKS
EXISTING IN ORTHOTROPIC AND ISOTROPIC PLATES

Frog the preceding analysis and especially from relations (7) and (8) we
arrive to the conclusion that the governing equations of the two problems
considered have the same functional form. Therefore, the searching for the
size and shape of the reflected caustics formed by the displacement field for
both of the two configurations can be jointly treated.

Using the symbol "i'" as a suffix for similar parameters of the two problems
we take for i=s (dynamic case) ’

2% i
[l—u/cs) 1% , &

25 FE8a rn s Srra ) a W) = e v & 6 (10)
whereas, for i=0 (static case), we have
= = s L i
% = 89 = (Esglpd o Kipge ™ Kpgg o Flodi= L, 8y = (CAACSB)% 1)
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The reflected-caustic curve is obtained on a screen at a distance 2z, from
the specimen, if a parallel (also convergent or divergent) light beam
impinges on the lateral faces of the two lips of the anti-plane crack. The
¢ylindrical curvature formed by the w-displacement deviates the reflected
light according to Snellius' law and two distinct areas, one completely dark
gurrounded by a bright curve, and another illuminated, are created on the
gcreen from the projections of either lip of the crack.

1f w(x,y) expresses the function describing the deformed surface with respect
to the undeformed lateral face of the plate, i.e. Eags.(7) and (8) in our
case, the caustic curve may be approximated by the following simplified
equations (Theocaris, 1981)

9 : 9 s
X(x,y) = A_x-22 ——L"gi ) | ¥(x,y) = A_y-2z ——~—X—Wé’; ) (12)

The latter expressions may be written in terms of the scaling coordinates Xi’
¥yq as follows

X( ) = A -2z Ejffi:Zil Y(x ) = Kmyi - 2a.z EiﬁfilZil
Xi0Y5 n i <%0 ox. : i*Yi ) i%0 3y.
i 1 i
(13)
Finally, the equations of mapping in polar form are
i
KIII
X(r,,9.) = A_r.cos9 +2z ———— sin(9./2)F(a,) (14,1)
i rd m i i 0 i i
G.(2nx.)
s RS ]
Amrisin%i K;II
Y(r. ,9.) = ——— - 2a,z, ————— cos(9,/2)F(a.) (14:2)
1A 0 . i 0 i i
i Gi(ani)

High luminosity of the caustic curve, formed on the screen, implies that this
curve is a singular mathematical curve. Therefore, the Jacobian determinant
must be vanished, then it is wvalid

CAK,Y) _
S TCI)

The zeroing of the Jacobian determinant gives a function r=r(8), called the
initial curve, which has the property that every point inside or outside this
curve maps outside the caustic in the (X,Y)-plane and every point on the
initial curve maps on the caustic curve.

0 (15)

Then, from Eq.(15) we have
9(X,Y) _ 9(X,Y)

B9 Tley)

3Ge,y) | %1 G,y | M a(r,9 ) =0 (16}

We obtain for the Jacobian determinant

Iax/ari 9K/ 39 3 o
" 5 ’ "
%%’SJ%—) = = 2% L e ¥ %1038, /2 )( l)—a,cz,r,z (17)
TiVy \SY/Bri av/29 m oy o * %y S
where i
Zin K F(a.)
o111
c; = LU 1 A - (18)
Gi(Zn)2

Inserting Eq.(17) into (16) we derive the equation for the initial curve
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they have been plotted by the computer. The ratio C55/C44=ze/G‘z ranges
fistween 0.60 and 1.40. Fig. 3 presents caustic curves theoretically obtained
for the case of a dynamic and isotropic crack and for constant ve-

iscity. The ratio U/cS ranges between 0 and 0.90. In both cases the

&% T -factor is kept constant in order to examine the effect of orthotropy
gﬂé velocity in the shape and the size of the caustics.

2) (19)

of {cisin(Bei/Z)(l—ai)+ci[sin2(3%i/2)(l—oni)2+4ai]%}2/3
1’
m

One may observe‘t§at Eqs.(14),(17) and (19) are reduced to the respective
equations prevailing for a stationary crack in an isotropic plate under mode~

III deformation when ai=l and c44=c55=G.
EVALUATION OF THE TRANSVERSE DISTANCES Ymax OF THE
Y CAUSTICS AND THE RESPECTIVE Ki__-FACTOR
A 111
Relation (14.2) presents extrema,which may be found by zeroing the derivative
aY( )/99 ..
i ik
Thus we have
crack Y (8,) i
0 > Sl LU0 BN p 28 08D e P YR 6 sin(n, )20
0 99, m i \ o i o, i i i
X 1 i
- al *
R 1/3+0.84aicos(%i/2)R 4/3R ) =0 (20)
100 with
S ; 12 2 2k
1.20 R = s1n(3%i/2)(l—ai)+[31n (3%1/2)(1fui) +4ai] @1n
Cs/Cyy =140 RENBR L i 12 (g o
R 35 2(1 ai)cos(BQi/Z){l+(l ai)[51n (B%i/Z)(l ai) +4ai] 51n(331/2)}
y . (21.2)
Fig. 2. Caustic curves for a static crack traversing an e
orthotropic plate. £q.(20) has been solved with the computer and gives the value of § =9 for
which the transverse distance takes its maximum Ymax' This quantit% may be
written in the form j
Y
4 e (22)
max m 1 1 .
vlcg =090 where
max
(sing maxy\2/3 max\-1/3
080 AR e /3___ i max 2 /R \ 9
crack 95 { SN d e e )\ 25 e
X is a correction factor given in the diagram of Fig, 4 for various ratios of
(CSS/CAA) and (u/cs).
From Eq.(18) and (22) the relation, which connects the K;II—factor with the
material constants and the experimental data and the appropriate parameters,
is given by 1
. b R I o (24)
ik 1
v/cg=0.90 III AéZOF(ai) \S?ax}
Fig. 3. o ti i :
& austlc curves for a dynamic crack traversing an Thus, with one simple measurement of the maximum transverse distance of the

isotropic plate.

experimental caustic from the crack-axis and by using the diagram of Fig. &
and relation (24) one may evaluate the stress intensity factors of the anti-

Fig. 2 presents caustic curves for the case of A 2
of a static orthotropic crack as plane problems considered in this paper.
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Fig. 4. Correction factors &- -+

max
and 65 versus (c55/c44)
and (U/CS) respectively.
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