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ABSTRACT

A crack initiation life prediction scheme is proposed by integrating a growth
law for micro-cracks. The growth of small cracks is described by the
effective cyclic J-integral, Z. From this procedure a new damage parameter,
Z3, is defined which contains the plastic strain range, thé stress range, and
the mean stress. The latter two improve the prediction in the high cycle
regime. In order to carry out this type of life prediction a couple of
specimens are required to obtain cyclic stress strain curves from incremental
step tests and about 10 specimens to obtain an SN-curve in terms of the Z3
parameter. No crack growth data are required because of the intimate
connection between 1life and crack growth law. Experimental results on mean
stress effects and on random loading are compared with the predictions wusing
Zy as well as the Smith-parameter.
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INTRODUCTION

Many proposals have been made for predicting the fatigue life under variable
amplitude 1loading on the basis of constant amplitude loading data. Most of
these approaches are based on phenomenologically defined damage parameters,
which are supposed to determine the increment of damage done to the material
within each cycle (Miner’s law). In such approaches the physical nature of
the fatigue damage as well as of the damage parameters remain unspecified. In
the present paper it was tried to avoid both drawbacks by defining the
fatigue damage as the maximum crack length present. Life predictions can then
be made by integrating the appropriate general crack growth law. Studies of
this kind were done previously (Kaisand and Mowbray, 1979, Tanaka, Hoshide,
and Maekawa 1982) but were not applied to random loading. On the other hand
this study is limited to life predictions on smooth specimens only.
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EXPERIMENTAL

Z:Zeio§8;ié:§ 3t;u§t?zal steels, StE 47, StE 70, and one quench and tempered
[} ISI 4340) were used. The latter one wa
: ) . s heat treated
;YzhdlffSEent yield strengths of 740 and 1100 MPa. Smooth tensile specimegg
o a d ameteF, D, of 6.or 8 mm and a gauge length of 2D were machined with
peclmen axis perpendicular to the rolling direction. The surface of th
gauge length was polished mechanically. i

The §pecimens were fatigued in a computer
testing system. The compliance was measured

that the plastic strain amplitude could be d
better than 10~

controlled hydraulic closed-loop
on-line with high precision, such
etermined with an accurac of
- The length of the surface cracks was measured opticallz.
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Fig. 1. Stress range versus strain :
range of closed hystereses loops
during random loading tests and
incremental step tests.

Fig. 2. Predicted and measured
plastic strain ranges during random
total strain tests.

CYCLIC STRESS STRAIN BEHAVIOR.

terms of the reversal values of
On the other hand the plastic strain
r estimating the fatigue damage as
Yy general validity of Coffin-Manson’s law (Manson

as a first step a prediction of the plastic
r total strain history must be performed. This
cyclic stress strain
y the existence of a universal function,
uniquely relates ranges
of stress and plastic strain as long as both are
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increasing monotonically (Masing 1926). For general 1loading histories the
cyclic memory effect 1is assumed which enforces rain-flow counting of the
closed hystereses loops (Martin, Topper, and Sinclair 1970).

The three steels used show a Masing-type behavior to a reasonable degree of
accuracy. The main problem is cyclic softening which is not included in the
Masing-model. Because of deviations from the ideal Masing behavior cyclic
stress strain curves depend on the exact way how they are measured. Those
which were obtained by incremental step tests (Landgraf, Morrow, and Endo
1969) were found to be most similar to the relation between stress ranges and
plastic strain ranges during random loading. Both are compared in fig. 1. If
strong cyclic softening is observed, however, incremental step test and
random loading must have comparable maximum loads to obtain a reasonable
agreement. Obviously the cyclic stress strain curve can be approximated by a
power—-law

dey = C) ac™ (1)
The two material parameters Cl and n can be measured by an incremental step
test with a single specimen. Figure 2 shows an example of the prediction of
the peak values of the plastic strain calculated from the peak values of the
total strain. It is obvious that there 1is a good correlation with the
measured values. In the following we shall use therefore only cyclic stress
strain curves obtained from incremental step tests.
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Fig. 3. Semi-circular surface cracks Fig. 4. Growth rate of small cracks
marked by heat tinting on a fracture as a function of the nominal
surface. effective stress range.

THE GROWTH OF MICRO CRACKS.

During random loading microcracks are obtained as soon as the first high peak
load is applied. Thus more than 907% of the technical crack initiation life
(a<l mm) is spent by growth of these microcracks. They originate at surface
inclusions (ZrS, or more complex inclusions) which are about 30 ym in
diamater. Initially the cracks are of comparable size. Depending on the load
level, there are many crack nuclei (fig. 3), which grow independently as long
as their lengths are smaller than their mutual distances. This was found by
observing the growth of many individual cracks with the help of an optical
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microscope. The cracks h
depth to width ratio of
of the local stress inte
(Raju ‘and Newman 1979).

ave a well defined almo
0.89/2, which agrees wi
nsity along the front of thumbnail

st semi-circular shape with

As shown in fig. 4 the growth behavior of
described in terms of AR gg-values.

compared to long cracks is observed, bec
applicable to this case of

specimen. For such a case in uni
appropriate loading parameter. Since J-integral ar
to cycling loading of Masing-type materials (Lamba 1975, Wuethrich
follow the arguments of Dowling 1977, who estimated the J-
surface cracks. The cyclic J-integral, which we shall
Wuethrich, 1982, in order to

distinguish it from the
J-integral, is composed of a plastic, WP’ and an elastic, W
to

small cracks embedded i
—directional loading the

Zefr = @ (£1Wy o5¢ + fpeup) (2)

F"Wlm T T TTTTI T
E S

o4 |

NN

0t

07

©

-1
LI I 1 e | TTTImT 71
o

=Ll

ff

“ CT specimen
cylindrical specimen £ R=10

N
Ll

do/d [ ml
0t

wH_E

Ll

(1]
(1]
—
=y
9

,

\u4s
da/dN = 3251077 ; - (—"'-)

10

Jm?

= =

— 1 11‘?||||l 111 tpi 11ttt
B S |
<—N\e 0

10 0’
p Iy Lim?)
Fig. 5. Definition of the elastic Fig. 6. Growth rate of small cracks
and plastic contributions to the

as a function of the effective cyclic
effective cyclic J-integral, Zeff' J-integral Zeff'

=
-

With more accurate solutions than those available
following values for the numerical coefficients f1 and f2: £, = 2.9,

f2 = 2.5. The definition of W._ and We in terms of the hysterese "loop, which
coincides in Masing type materials with the doubled cyclic strain curve

to Dowling we obtained the

, are
given in fig. 5. Thus the loop shape is given by (1) and we obtain
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line in this double logarithmic plot indicating a
da/dN on Zaffe

Figure 7 shows results for various compressive mean stresses. The onl:
deviations from eq. (5) visible in fig. 6 and 7 are due to threshold behavio,

of the cracks. It will be neglected in the following resulting in slight!;
conservative life predictions.

LIFE  PREDICTION

Miner’s rule can be stated in the following form:

_ N

D = (6
Ne¢(damage param.)

where D is the damage, which becomes unity at the end of the life. We
consider the technical crack initiation 1life to be exspired whey
a=ag (=1 mm). Furthermore, since the crack length, a, determines the
damage, we have D = f(a) with f(af) = 1. Thus eq. (6) becomes

da 1

dan df/da Nr(damage param.)

€

The essential point of the form of eq. (7) is, that the crack length
dependent part can be separated multiplicatively from the part which depends
on the damage parameter. Then eq. (6) follows from eq. (7). Thus Miner’s ruie
is obviously equivalent to a crack growth law of the form of eq. (7) under
conditions where crack growth determines the specimen life. Qur crack growth
law

da Ao 2 n m

ff n+1
——=ies a" (2.9 S v o5 0l Ad 8
dN 2 ( 2E 1 ¥l ) e

(which is obtained by inserting eq. (2) and (3) into (5)) is indeed of this
type and therefore it implies Miner’s rule. From eq. (7) and (8) we have

" ~m
Ne = C3 Z3 9
Z Ao n
o . eff | ef n+1
with Zq = = 2+9 —55 + 2.5 C; T Ac (10)

where Cy = (m—l)/(Cz(a%'m—aé_m)) can be obtained by integrating eq. (8)
(ao=30um is the 1initial crack size). Figure 8 shows an example of the good
agreement between the experimental data and eq. (9). Obviously, Zy defined by
eq. (10) is an appropriate damage parameter for linear damage accumulation
based on micro-crack growth according to eq. (8). Zq contains via We and W,
both the stress range as well as the plastic strain range. Both terms are
necessary in an appropriate damage parameter: The plastic strain term implies
Coffin-Manson’s law at low cycle fatigue conditions. The stress term makes Zy
a valid damage parameter in the high cycle range, where Coffin-Manson’s law
breaks down. Note that no adjustable parameters were used at all and eq. (10)
was derived -~ without any further assumptions - from a crack growth law (8)

which in turn was derived from fairly well justified fracture mechanics
considerations.

Many experiments were performed to test the validity of this prediction

power-law dependence of

(WA 66

method in block loading tests with mean stresses, which are ?thn{fnnlr
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in both directions (increasing and decreasing). The plastic stra;n.lamplizgd:
varied between 21072 and 10 °. The calc?lated damage at. a; urehan b
scatter of about 257 independent of the direction of the émpllzu e ;th %he
indicating that retardation or accelerati?n effech do not 1nFe; ere wreSSive
prediction. Figure 11 shows the life in bi-harmonic tests wit comp
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mean strain and repeated tensile overstrains as a function of the amount of
overstrain. The Zy prediction agrees with the data, the Smith-paramater
prediction is less accurate.

Figure 12 shows the predictions for random load experiments with an analysis
of the scatter in fig. 13. The accuracy of the prediction is of the order of
30% and is slightly non-conservative.

CONCLUSIONS

A short guide-line is given how to proceed in order to make predictions of
the technical crack initiation life based on Zg-

l. An incremental step test with one specimen yields C, and n in eq. (1). If
there is strong cyclic softening, several tests with éifferent/maximum loads
must be performed. This provides all the necessary data to calculate Z23 from

Ac and o, according to eq. (10).

2. Constant Zy fatigue tests (constant Ae tests are sufficient in most
cases) with 10 to 20 specimens yield C, and m in eq. (9) allowing standard
damage accumulation calculations using (6) with (9) i.e. dD = dN/(C3ZEm).

Note: No crack growth measurements need to be performed because of the
intimate connection between life and crack growth (eq. (5) and 9)).
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