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ABSTRACT

1t is @ matter of fact that ruptures in rocks usually move along
some curvilinear and/or branching surfaces. Hence, of special
interest is the dynamic growth of rupture congisting of alter-
pating open and shear mode elements along a sawtooth path. The
purpose of this paperis to calculate dynamic field of elastic
disturbances generated by complex ruptures propagating at vari-
able speed along arbitrary curvilinear path. The solutions ob-
tained can be utilized to solve the main problem of theoretical
seismology, namely, to determine the location, orientation, tra-
jectory and speed of fracture spreading inside the Earth basing
upon analysis of dynamic displacement field. The paper may be

of interest also for acoustic emission study. The two-dimensio-
nel model is considered for simplicity.
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INTRODUCTION

The excessive passion for the force condition on rupture bor-
ders did not justify hopes in dynamical problems of seismology
because the solutions at hand (Kostrov,1966, 1974) are too cum-
bersome for effective analysis. As it was shown earlier (Chere-
panov and Afanas’ev, 1974, Bykovtsev, 1978,1979,1983 a, b, c;
Bykovtsev and Cherepanov, 1980 a, b, c, 1981 a, b; Bykovtsev and
Tavbaev, 1984; Cherepanov, 1979), the dislocation representation
of ruptures is more convenient to use as compared to the force
description. Below we apply the dislocation description of rup-
ture. The dislocation rupture is defined as a cut at every point
of which the magnitude and direction of the displacement discon-
tinuity vector are given as functions of time and coordinates.
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lar coordinate system Oxyz at constant speed 7~ along the posgi-
tive x-axis at the initial time moment t=0 in a homogeneous

isotropic elastic medium (/%4 - elastic shear modulus). Let Ux,
Uy and Uz be the components of displacement vector along x, y
and z axes, respectively, and 6or s 622 , 6, 6>

9 ’ Z
the respective components of stress“ensor. The ;ioblem is ég_
sumed to be plane, that is, Ux, Uy, Uz are functions of x and y
only.

The basic equations of the dynamic theory of elasticity are in
this case as follows:

- P s » s 5
U=l Us , U=URY", U=l (1)
nz 2% it e
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Here superscripts P and 8 correspond to longitudinal and

transversal components of displacement, Cp and Cs are velocities
of respective longitudinal ang transversal waves (Cp = Cs).

Let the displacement discontinuity on rupture be the homogeneous
function of zeroth dimension f(r/t). In the general case thig

function may be represented as
/Z=Vx2+}/‘/ (2)

FOR) S ()0 f )] f ()R,

(E;'E;E' are unit vectors along x, Y, 2z axes respectively).
p N

Therefore, the general dislocation rupture may be treated as su-
perposition of sliding, open and tearing modes. So, we have the
following boundary problems:

sliding mode rupture (the problem is skew-symmetric with respect
to x-axis)

7 th
e 2 (4), 6440 tor 40,
Zé;:é)) Q; =0 for é/=CZ
open mode rupture (the problem is symmetric with respect to

-axis)
x-axis yf;::}_ﬁ[z/f/, 6;.;:0 for =0, O< et

O<ac <

x<0, x>p¥ (33

Z§'=é7, 6;9,=C7 for é/=CZ x<l x>pt
tearing mode rupture

Z=21 3(%) for ﬁ:a; 0<‘Z<”2f (5)

U =0 for ?’=0’ x<0, x>0t

The problems posed are gelf-similar.

THE FUNDAMENTAL SOLUTIONS

We utilize the general approach (Cherepanov, 1979) to these
problems which allows us toiireduce the self-similar problems to
some Riemann-Hilbert pProblems of the theory of analytic functions
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of the complex variable. :
If the functions LUx, LUy, LUz are homogeneous, then we intro-
duce the following notation: " &
2 —
Ura=/_.2/;c , @:A%, A 6;:;:"4:6;:&; (6)
6y “LsOyy, Oy =Ls6zy , 6ez=Li0nz, 65216,
where L is the I&near differential operator of the type
9m+n
L= ———
dax™ It —
egsentation of the solutions are of the follo
ggg %gggfa%ozegie problems symmetrical with respect to x-axis
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(9)
for the antiplane problems

o ’, < L4 / 82
U=U™=0, U=Re W4 (2,), 6paReWi(2)3% , G rpaRel5) 5,
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where
. == 2, 2)~7 ’

T Z= @ x-ty PO ) (g ) (o)

The boundary problem (1)-(5) may be formulated in terms of the

representations (7)-(9) as the following Dirichlet problem:

ReW(2)=2£(3)  tor /mZ=0, ReZ>v"" (10

peM(Zj=o for [mZ=0, ReZ< U™’
The solution of this problem is provided by the Schwartz integral
1)1 (VEdt
"'Gé/‘z«,zzf—,’g{é—ﬁd M

From here, we can find stresses and displacements by means of
formulae (7)-(9) taking in account that L=1 because displace-
ments are homogeneous functions. :

We consider the case when f(—;)—“-B (gz,gz,gs) =const in more
detail. For this case the solution of the problem (10) is of the

form A
M(Z}-——%Zn(/—yzj, (G=123) (12)

Formulae (12) provide fundamental solutions which allow, on the
basis of the superposition principle, to construct the solution
of ?gﬁlgrobleg foi arbitgaiy system of ruptures propagating at
vari speeds along arbitrary traiectories
19838, b,c; Bykovisev and Cherepanov,1980a,b‘)(],3yk°wsev’1978’1979'
ANALYSIS OF THE SOLUTION

Analysis of stresses near a moving edge of rupture shows that,
after a certain critical velocity ¥, is achieved, there appear
two symmetrical maxima for the stress 0» (sliding mode) and
for the stress 6pp (open mode). This implies that the linear
propagaxlon of rupture appears to be impossible for > i
that is, rupture path either kinks or branches. The equation
for this critical velocity is identical for both sliding and
open modes (Bykovtsev and Cherepanov, 1980 ¢, 1981 b). It has
the form (Bykovtsev and Cherepanov, 1980 c)

G- \fTo = (13- 2) 2 22-0 )"0, =k

Here are some values of the root, K , of this equation in terms

of Poisson’s ratio ) :
059 064

9

< 046 0.485 0575 0.55
Yy 0 01 02 0.3 04 05

It is wseen that the critical velocity of linear propagation for

dislocation ruptures is approximately t
cracks (Cherepanov, 1979)?p v en;Percent e e
7 7 n

Theiplots of stress coefficients /(? s Nepyp ,sz and Kpe ,/(yy :

2y for open and sliding modes respectively are given in Fi
%n the case of open mode rupture for U>Ux ¥he st%essﬁ} g;gé;és
0 grow considerably and the stress 6y, to have two symﬁétrical
maxi@a. This should result in the appearance of two symmetrical
sl%dlng mode branghes. In the case of sliding mode rupture there
exists extemsion in the half-plane on one side of the rupture.
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This should lead to the formation of open mode branch in this
range. Hence, the propagation of the main rupture is accompa-
nied with intermitting formation of open and sliding mode
branches. i

The theoretical seismograms (time history of displacements) cal-
culated by the help of superposition of fundamental solutions
for two cases of typical kinking ruptures are given in Figs 2
and 3.

It is seen from Figs 2 and 3 that the peaks on theoretical
seismograms correspond to the moments of formation or stop of
the branches. In some cases the sign-alternating seismograms
may be also obtained (Bykovtsev and Cherepanov, 1980 a,b).

~ The signal duration in the direction of motion is less than in

the opposite direction, i.e. frequences in the direction of mo-
tion are higher than in the opposite direction. This is a visu-
al demonstration of Doppler effect. This peculiarity of wave
field can be used to find the plane and direction of the main

rupture propagation.

Tt 1s of interest that in the case of dislocation description
the displacement field far from the original rupture.practlcal—
1y coincides with that for the crack with force conditions on
its bo§ders (Bykovtsev, 1978, 1979; Bykovtsev and Cherepanov,
1980 b).

CONCLUSION

The dislocation description of ruptures used above is of prac-
tical importance for the study of the dynamic propagation of
curvilinear ruptures at variable speed.
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Fig.3. The theoretical seismograms for P+S - wave initiated by
open mode dislocation rupture. :
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