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ABSTRACT

The dynamic crack curving and crack branching criteria with modifications are
presented. The modified crack curving and branching criteria are verified
with the dynamic photoelastic experiments involving Homalite-100 and polycar-
bonate fracture specimens. Crack curving was consistently observed when the
characteristic distance D=0 and branching was observed when the necessary
condition of KI > KIb and%sufffcient condition of r X r_ were satisfied
simultaneously. Thé crack branching criterion is tRen uSed to predict crack
branching in a pressurized metal pipe.
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INTRODUCTION

The analytical models which describe crack propagation, either from an ener-
gistic standpoint or through the crack tip stress state, assume that a
straight crack will continue to propagate straight under symmetric loading
and boundary conditions. Experimental evidence, however, shows that even
under these conditions, the crack tended to deviate from its straight path
either by gradually curving or by sudden splitting into two or more branch
cracks. Experimental evidence on crack curving and crack branching can be
found in Rossmanith (1980), Ravichandra (1982)and Ramulu and Kobayashi (1983).
Recently, the authors proposed a dynamic crack curving (Ramulu and Kobayashi,
1983) and branching (Ramulu, Kobayashi and Kang, 1982) criteria based on the
directional stability of a propagating crack. This criteria incorporates, 1in
principle, crack-tip microcracking which governs the direction of crack
growth. Such micro-cracking is shown schematically in Fig. 1 where micro-
crack nucleation, growth, and interaction, which effectively blunts the crack
tip, are triggered by the singular stress field. Load shedding due to blunt-
ing then activates off-axis micro-cracks which tend to divert the crack away
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Figure 1. Crack Curving and Branching Mechanisms
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DYNAMIC CRACK CURVING CRITERION

Iggsgufhors have used both the maximum circumfere
crackacuiC?nthe $;21mum strain energy density criterion (1983b) in predictin
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K. and K.. are the modes I and II dynamic stress intensity factors and ¢, c
a‘d c, are the crack velocity, dilatational and distortional stress wave
valoc?ties, respectively. g is the remote stress or the non-singular
stress acting in the direction of crack propagation. Crack curving occurs
when the circumferential stress, Og5g° at an inclined distance of r away from
the propagating crack reaches an extremum value. The extremum condition for
a. ., which is derived from Equation (1), with K., = 0, yields a functional
rg?ation between the r and 6 as (Ramulu, Kobayashi and Kang, 1982):

o R (2)

The above relation can be used to determine the crack curving angle under
given K., r and positive %, (Ramulu and co-workers, 1983). By setting 6 =0
i{n this relation the fo]]ow*ng condition for self-similar crack extension is

obtained:

s 2
to 1287 [?_}vo(clclrcz) (3)
ox
where
# 2 2 4s.s
Volereyrcy)=IB, (c) {-(1483) (2-357) - +;22(14+3S§)+16 (145,5,) }]
2

Ramulu and Kobayashi's (1983) crack stability criterion, which is a dynamic
extension of Streit and Finnie's (1980) static crack directional stability
criterion, assumes that the crack will propagate straight when the above
characteristic distance of r_ is larger than a material parameter of r_. When
rs is less than r_ and % >0, the crack suddenly becomes unstable and will
veer off in the nGn-zero®® direction which is determined from Equation (2).
Detailed studies on the vaFiations in this crack kinking angle with respect
to variations in fracture parameters are found in Ramulu and Kobayashi (1983a

and b).

Thus, the crack curving criterion can be summarized as:

Kic £ Ky < Ky

=r

r
ore e

where KIC is the dynamic fracture toughness of the material and KIb is the
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critical branching stress intensity factor.

determined from the experimentally determined
KI from the relation

The crack curving angle can be
fracture parameters of Fs and
given in Equation (2) for positive o

DYNAMIC CRACK BRANCHING CRITERION

equires as a necessary condition,
sufficient released strain energy for generating simultaneousily, multiple

cracks. Thus a critical stress intensity factor, KIb’ 1s implicated in this
necessary condition.

In order to generate multiple crack simu]taneous]y, these cracks must branch

from thier original self-similar crack propagation path. Thus, crack curving
is introduced as a sufficiency condition.

The crack branching criterion can be summarized as:
KI > KIb Necessary condition
o L ni2, Sufficient condition

The crack kinking angle determined from the sufficie
of the crack branching angle, and can be deter
curving criterion for a positive a,

ncy condition is one half
mined from the latter crack

DYNAMIC CRACK CURVING IN PHOTOELASTIC SPECIMENS

The validity of the above crack curving criter
photoe]asticity results of Homalite-100 (Ramulu and Kobayashi, 1983) and
polycarbonate (Sun and Co-workers, 1982) fracture specimens. 1In the follow-

ing, one typical result from each of the above series of experiments will be
shown.

fon was verified by dynamic

Figure 2 shows the curved crack and the associated dynamic K., KI s o
r_ in a Homalite-100, wedge-loaded, rectangular doub]e—canti{ever beam
(WLRDCB) specimen of 9.5-mm thick and 76.2 x 152.4 mm with a blunt fnitial
crack of length 2.4 mm (Ramulu and Kobayashi, 1983). The experimental details
of this series of tests can be found {n Kobayashi, Mall and Lee,
While continuous fluctuations in the dynamic parame
crack path, T

x’ and

stage of crack propaga-
of Homalite-100 yielded
c of 1.3 mm.

Figure 3 shows specimen configurations and crack
double edge crack tension sp
set slanted cracks

paths of five polycarbonate
ecimens with either offset parallel] cracks, off-
Or symmetrically located twin cracks which were used in
The annealed thin polycarbonate specimens
with blunt starter cracks exhibited brittle fracture with shear lips less
than 10 percent of the thickness and an apparent crack tip yield zone of less
than 1.5 mm. Also shown in Fig. 3 are the curved crack path fractures.

average rc value was 0.5 mm and is consistent with the r. estimated by
Theocaris~(1980).

The range of fracture parameters associated with this series of

crack curving
experiments on Homalte~100 and polycarbona

te are summarized in Table 1. The
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TABLE 1 SUMMARY OF EXPERIMENTAL AND THEORETICAL RESULTS OF CRACK

CURVING

Total Number of Experiments:
Type of Fracture §pec1mens:
Number of Data Points:

Crack Velocity, c/cl:

Ky (MPa /) :

rox(m%;-

M8asured Crack Curving Angle:
Predicted Crack Curving Angle:

HOMALITE-100
9

DTT, WLRDCB
81

About 0.21

0.50 to 1.59
-0.22 to 0.18
2.89 to 4.04

1.0 to 1.5

-20 to 26 degrees
-20 to 25 degrees

SEN,

POLYCARBONATE
5

Double Edge Crack Spec.

114

About 0.22

1.5 to 3.2

-0.33 to 0.19
-11.1 to 2.5
0.25 to 0.75

-20 to 3 degrees
-19 to 5 degrees
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Figure 4 shows the variations in dynamic K., K__ and r in a fracturing
singled edge notch (SEN), Homalite-100 specimeh of 9.5%m thick and 254 x 254
mm in size (Ramulu, Kobayashi and Kang, 1982). The experimental details of
this series of tests are given in Kobayashi and co-workers, (1974). The
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nitial crack, arrested after branching. By £ ] — GlER e e e

extrapolating the K. before and after branching, a Kip = 2.0 MPa/in and after L sr ¥ = : e

branching K. = 0.9 MPavi are obtained. The r_ reachll an estimated minimum ' ] b=l o osi— L Lo L oo~ &0
value of 1.3 mm at branching. The results of%the other five experiments - f§.1 ".‘:.._;l BRANCHING— CRACKELENSTHI IS Sas
(Ramulu, Kobayashi and Kang, 1982) yielded an average r_ of 1.3 mm at branch- - ,. ] 4

ing and a K., = 2,04 MPavm. At the onset of crack branghing, the crack vetlo- LR e ‘

city was found to be about 0.18 ¢,. This K p> Which is approximately 4.9 g s b ~ g

times the fracture toughness of Homa]ite-106, Is in agreement with the ¥ &

measured KIb of Dally (1979). E L 208

= o Taa d

Figure 5 shows the K., KII and %x Variations in a 3.2 mm thicks 127 x 127 mm . 5 5;:=’_0_=;3: E Figure 5. Mog?z §t32§51§n2in—
polycarbonate, singlé edgdé notch specimen with a blunt starter crack (Ramulu ———e do1o @ na tors & o
and co-workers, 1983). K. = 3.3 MPavm and an after K, = 2,2 MPavm were ob- E V F ‘%¢7°°°°<»qmo 8 sity Fachod CcracR¥
tained by extrapolating t 3 KI curve. While K remained small prior to ¥ qf Bran% eEdged
branching, a K.. = 0.9 MPa,/m was obtained 1mme£¥ate]y after branching. The 8 o m S1n$ esion
crack velocity at the onset of branching in this material was found to be o} gV S A Crack Ten

about 0.24 c.. This series of five crack branching experiments yielded an ; Spec1228é26_])
average value of KIb = 3.3 MPam and re = 0.7 mm for this material. : 4 =5 (#KB-

. -1 0 100

In the SEN specimens, the energistic requirement for multiple cracking was - o » u&zx :x“;:‘m, =n
satisfied but the crack curving criterion could not be satisfied since g <
0, Kir = 0. Under such conditon, /+ g. /K

is maximum at '@ = 0 for the cP3ck

However, the peduction in angular stress distribu-
at 6 = + (10-14) degrees is a mere 1.7 - 3.5% which allows

¥1 bifurcate and double 1its energy release rate. Therefore,

ve]og¥ty of c/c, < 0.32.
tion of yF'Oée/
the crack o sti

Branching
, Specimen  Initial Crack . = Angle

the predicted crack branching angle with crack curving 1is, at best, an estimat- N Thickness Crack Length at Ib Tox ¢ 20

ed angle (Ramulu and co-workers, 1983). The summary of crack branching re- Jost o Length Branching c
sults on Homalite-100 and polycarbonate material is given in Table 2. It is ' MPaym MPa mm Measd. Est.
1nterest1ng to observe that the branching stress intensity factor appears to h a ap avm Degrees

be independent of the thickness as well as the initial and branching crack : T ma mm

lengths. Also note that the deviation between the estimated and measured o
crack branching angles was 6 degrees and the average deviation was 3 dégrees. QMAL ITE-100 S 5.6 66.0 2.08 -6.23 i.g gg 24
The crack curving as well as the crack branching criteria are also applicable B8 3:18 4.3 177.0 2.0; :2'75 1.4 26 26
to quasi-static problems. The crack branching criterion was thus used to - B9 70 3.58 5.8 139.7 2.0O —6.80 1.4 30 28
ovaluate branching data of 76 x 152 x 9.5 yy thick Homalite-100, wedge 1oad- WgB22 9.53 5.1 52.6 2’08 —7.08 1.2 30 28
ed, rectangular double cantilever beam specimens (Ramulu, Kobayash{ and Kang, e 9.53 13.5 19.1 2.0 -7.60 1.3 28 32
1982). Since the cracks Immediately branched from the blunt starter crack B 9.53 13.5 28.7 Z2.08 -6.70 1.3 27.8 21.3
upon crack initiation, the nNecessary and sufficient conditions for branching B6 Average 2.04 E

were deduced by static-finite element analysis. Extreme bluntness of the - 3.3 -11.50 0.85 34 31
starter crack render K values meaningless and thus only the crack branching 820826-1 3.2 15 86 -2 S 0.78 22 28
angies were considered. Table 3 summarizes the results of six tests where 5 20816-2 6.4 9 52 2 —11-18 0.78 29 26
excellent agreement between the predicted and measured branch angles are ' Eg:gZOSZZ 3.2 16 65 g-i _14:72 0.58 25 268
geod: KB-820824 3.2 15 Averagé 3.3 -12.22 0.75 25 27.8.
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CRACK BRANCHING IN PRESSURIZED PIPES

The crack branching criterion was aiso used to predict the crack branching
angle in a fracturing thin mild steel tube which burst at -120° ¢ (Congleton,
1973; Almond and co-workers,1969). The Pipe was 12.7 mm thick, 152 mm d{ame-
ter with a tota] length of 4572 mm and a central through crack of 2a = 57,2
mm.  Two-dimensiona] dynamic finite element analysis was u
tion mode (Kobayash 1, 1979) to determine numerically the dynamic K.. and the
O, With crack Propagation. Details of this analysis are found 1n"Ramulu,
Koggyashi and Kang (1982). The characteristic r.=1mn
estimated by measuring the lengths of the secondagy cracks in the photomicro-
graph. The numerically obtained KI = 124 MPavim was within 5 percent of
Congleton's estimated value based g static analysis. The crack branching
angles in Pressurized stee] (Congleton, 1973; Almond and Co-workers 1969) as
well as aluminum (Shannon and Wells, 1974) Pipes; as shown in Table 4, were
also predicted by this crack branching criterion (Ramulu, Kobayash{ and Kang,

1982; Kobayash 1, 1983). The predicted branching angles agreed wel] with the
measured values,

CONCLUSIONS

2. This dynamic crack curving criterion predicted the actual crack kinking
angles 1in fracturing photoelastic specimens,

specimens.

55 This dynamic crack branching criterion predicted the actual crack
branching angle in dynamica]]y as well as statically fracturing photoelastic
specimens. It also Predicted the crack branching angle in a bursting metal
pipe.
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TABLE 3 SUMMARY OF CRACK BRANCHING ANGLE DISTRIBUTION IN A WEDGE
1st
Measured Calculated
Diameter of
?ﬁ?zlﬂzgs B]ﬁnt Notch Branch Angle Branch Angle

1st Branching
Test No. i 5 i o
= mmz 52 5%
L6B-120573 9.5 %.2 & 2
L10B-052473 9.5 5 o 2
L14B 9.5 5.8 2 2
L19B-013074 9.5 ;.4 i 2t
L27B-022474 9.5 . o 25
Branching Angle
b Branchingr Measured Predicted
Pl 5 20 2
MPa%i mm 2
64
Steel 124 l13 gg 5
Aluminum XXX o



