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ABSTRACT

Basing oh fracture mechanics concepts thg theory of a number of
well-known geophysical phenomena is considered. These are quasi-
-regular sets of polygonal breaks of "takyr" or "polygonal tund-
ra'" type in deserts or permafrost regions and closed landslips
in clay sedimentary rocks. Some special geographical examples

of these phenomena are indicated.
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INTRODUCTION

The development of cracks in rocks has formed the modern face
of the Earth._ghere exis% cracks of different kind in rocks
sized from 10 m to 10 'm. The subjects of this paper are:

(i) quasiregular 'sets of ruptures on the Earth surface which
give the landscape its specific appearance (takyrs in deserts,
polygonal tundra in permafrost regions regular sets of global
faults discovered by space photographys;

" (ii) closed giant landslips.

Good understanding and theoretical description of this phenome-
ne can be achieved only on the basis of fracture mechanics. The
most detailed review of rock fracture from the fracture mecha-~
nics view-point is given by Rice, 1980, What follows is a cont-
inuation of recent studies by the authors (Cherepanov et al.,
1973; Cherepanov, 1976, 1979, 1983; Bykovtsev and Cherepanov,
1980 a,b; Bykovtsev, 1983; Cherepanov and Bykovtsev, 1982,1984;
Bykovtsev, Cherepanov and Ulomov, 1984),

The theory for polygonal ruptures and closed landslips treated
below is of interest also for cracking of surface layers and
films in structural metals due to thermal stresses, corrosion,
shrinkage etc.
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POLYGONAL RUPTURES ON THE EARTH SURFACE

In some régions of the Earth one can often meet with quasiregu-
lar rupture sets which yield the landscape its specific appear-
ance. These are: takyrs in deserts, shrink cracks, frost shake
cracks, polygonal tundra (Fig.1). The common cause of these phe-
nomena is tensile stress in upper layers of soil. This stress
appears due to non-uniform cooling or drying of rock.

From the viewpoint of stresses and strains the decrease in rock
volume, AV , due to temperature drop or drying may be described
by a relationship of the type AV=38 Tv where % is volume, T
is temperature (or moisture?,lﬁ ig coefficient of temperature
expansion (or shrinkage ratio). This analogy allows thermal mo-
delling of shrinkage phenomenon. The volume decrease is a line-
ar function of tensile stress on the surface which leads to sur-
face cracking and formation of a complex geometrical structure
of ruptures studied below in model approximation of periodic
structure (Cherepanov and Bykovtsev, 1984 b 3.

We consider a regular periodic crack array whose front moves
perpendicularly to the half-space boundary coinciding with the
Earth surface (Fig.2). The crack front is in a plane located
above the plane of zero stress (in which the change of tempera-
ture or moisture is equal to zero). Let this front coincide with
the plane X,=0 (in a coordinate system OX,X,Xs moving to-
gether with the crack front). We direct X-axis along the axis of
one of the regular prisms A formed in the half-gpace by poly-
gonal regular array of cracks. We introduce the following nota-
tion: / is the intersection of the rupture front with the prism
P, S$” and S5 are lateral surfaces of the prism A2 for 2,50

X, <0 respectively. The surface S, coincides with a part of
the crack boundaries, the surface S being in the unfractured
space.

The boundary conditions are of the following form: .

\Z"—>-OO 6;/—»0 (2)
(Fra)e P Gr=0  (i,j=123) 3)

where /7, are components of the unit vector normal to the crack
boundary, 6;; are stress components. The quantitiespagin Eqn(1)
are equal to corresponding tensile stresses in the upper layer
of ?he earth appearing due to thermal decrease of volume (or
shrinkage) before rupture, Eqn(3) means that the crack boundary
is free of external loads. This problem is very complicated for
a thorough solution. However, the technique of invariant [ -In-
:ggg%ls enables us to extract useful relationships (Cherepanov,

We consider the closed surface 2 in the space X,X, X3 5
2=SE+S€+.S:E B +A* . Here A~ and§+ are cross-sections
of the infinite prism A for I, —> —co and xr,—» +oO res-

pectively, § 1is a section of the surface obtained in the space
as a track left by the circumference of radius £ whose center
is moving along the contour / (the plane in which the circumfe-
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Fig. 2. A gachome of regular poriodic crack array on tho surface of
a half-space. §

Fig. 3. A ochemo of a closed landslip on the Earth surface.
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rence is located is perpendicular to the contour / at any moment
of motion), S: and S are respective surfaces S and §* ,
without the part cut off by the surface S . The value of £ is
assumed small as compared to the linear dimension of the cell.
The following equation holds (Cherepanov, 1979)

5(ﬁUrz,—6{J 7 uu) d>=0 (if~723) (4)
X
Here ,° is density, &/ is specific elastic potential, z¢,; are

displacement components, 7z; are components of a unit vector nor-
mal to surface 5 .

We calculate successively integrals in Eqn(4). Since 2,=0 on
SEamd SE e L) on S  and moreover, 6,,/t,+6,572;=0

on & and z,,% 23,0 on S! due to symmetry conditions the

following equations are valid

sf_(..)oé2'=3£(..}d£'=0 (5)

&
The following equation also holds (Cherepanov, 1979)

-§6me =2 ! (PUn, 6 my2,, )l S (6)

Here /' is X, —oomponeéf of the vector of the energy flux den-
sity on the contour /. .

According to Egqn (3), we have
{ Unds=0, [ Unds=su, 1)
B~ 8"

Here S is the area of an array cell inside the contour Z
> 1s the value of / for x,—=+oo which is equal to

Uo=6o‘+92-2|)/09)/2ﬁ£ (8)

In accordance with Eqns (5)-(7), Eqn (4) takes the following

shape:
2pSU=Prde (9)
L

~

2pSU =/, P

(10)

where P is perimeter of the contourl . Let us consider some
special types of arrays.

Hexagonal array. It is natural to suppose that the crack array
should be regular for uniform tensile stress field (when p=g ).
From the grinciple of minimum of energy dissipation (Cherepa-
nov, 1979) it follows that the crack array should be hexagonal
for the case of uniform extension.

In this case S=§3—\/§'/"2 , P=6r » Wwhere, is the radius of
the circle circumscribed around the regular hexagon.
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Hence, using (8) and (10), we have dependence of array parameter
on operating stress

2=2EL p-)VE  (p=g) (1)

Rectangular array (quadrangular net). For non-uniform extension
of rock when p#¢ , at first, parallel cracks develop along
the maximal stress, then ( perhaps in another season) the other
system of parallel cracks perpendicular to the old one appears.
This is typical, e.g., in the vicinity of a river bend because
of different conditions of deforming the river bank and oxbow.
Frost shake crack arrays appear usually in the same manner.

Let > . Then, at first, parallel cracks form at some dis-
tance between them in plane strain conditions with respect to
X3 under one stress® . In this case we have (Cherepanov,1979)

2
ap*=£/. /(1+V) (12)
Thus, array parameter @ depends very simply on stresslo .

Similarly, we determine the other parameter of rectangular array
ignoring the interaction of different crack systems

E9°<£/c [(1+V) (13)

Egns (12) and (13) lead to a simple rule: the ratio of different
sides of a rectangle in a quadranguler net equals the reciprocal
ratio of corresponding squared stresses

YE=37p° WREO

For permafrost rocks and ice we take the followin Vélues of
cogﬁtants:§h= 103k§4cm2 (Romanovsky, 1977),/c = 1.5 x

10 "kg/cm(Cherepant¥, 1979). In the cage of hegagonal array we
have, "according to (11):p = 0.01 kg/cm® for r = 25 M, p =

0.05 kg/cm® for r = 1M.
CLOSED LANDSLIPS

As closed landslips we shall refer those whose front has not yet
appeared on the earth surface. These landslips are most danger-
ous and unpredictable. The well-known giant Atchinsky landslip
near the town of Angren in the Uzbek SSR seems to belong to this
type. The plane of the landslip is at the depth of 40-120 M in >
the field of clay rocks, the area of the 1andséip is 41éx 2.7 km?
The volume and mass of the landslip are 5 x 10° and 10" kg res-
pectiyely. The landslip plane inclination to the horizontal plane

is 6 . The displacement of the landslip is approximately const-
ant along the slope and into the depth, it amounted 12 + 2 M du-
ring the period from 1974 to 1981. =

The landslip body may be represented as a thin rectangular paral-
lelepiped 0<x< L, O<y<h, [Z/<Z// , whileh << 1-H
(Fig.3). The slip surface consists of three planes: y = 0,

z =+ £ /A - The landslip front along x =y =0 and z=*Z4/

is imbedded in rock. The back face of the landslip for x = L
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may be considered free because of low resistance of rock to ex-

tension. Deformation of the landslip may be assumed as plane

straln with respect to z except for the_vicinity of the faces

z = %4/ . Since L ~ H >> h, we have 96‘;/3x<<.3?'z}/35 and
QT;-/81:<<a5zﬂiy.Hence’ the equilibrium equations are as fol-

lows ¢ v

28 ~ = (15)
R i o
aé«ry/aé, F9sing, 86;,/3’ —pg cosy
Here O , 6, 5 2P are stresses, 2 1s rock density,JA is in-
clination angle to the horizontal plane.

We consider rock as a laminated body, the boundaries of the lay-
ers being perpendicular to y-axis (Fig.3). Eqns (15) . show
the stresses 6, and %, to be piecewise linear functlons.of Yo
For equilibrium limiting state we have the following equation:

7 & - 16
Q:qy—qéf/¢£§; é/—ﬁ (16)

This equation enables us to obtain the dependence of.critical
value of h on P , v , /%, 4 , and, hence, on rock m01stu;e con-
tent because of linear relationship between s and moisture
content. E.g., for homogeneous landslip we have

Pl ooy =k SEp)

The landslip velocity v 1is governed by rock creep in a thin
layer between opposite banks of the slip surface v =AQ;&743 =
=A/°E/L sinpt /2 . Here is viscosity coefficient, AY/is the
thickness of viscous layer of the order of 1 M.

Besides, for closed landslips the following equation holds (Che-
repanov, 1979):

+
[=2pghesing  (u=[vrt)dt) (18)
o
Here /" is the density of energy flux on the landslip front, u
is the displacement of the landslip.

According to the general theory of motion of the displacement
discontinuity surfaces in solids, there exists a certain criti-
cal value of /' characterizing the beginning of motion of the
surface which is equal to the energy dissipation /7 per unit

of the new-formed, slip surface. If /</e , then the land-
glip front is fixed and the rock near the frontal face is plas-
tically flowing. This is the case realized presently in the
Atchinsky landslip. After /' becomes equal to /o the slip front
will begin to propagate and involve new mass of rock to the
landslip.

The additional load on the surface in the region of plastic
flow in the vicinity of the landslip front has double effect.
On one hand, the resistance to plastic flow of rock on this re-
gion increases; on the other hand, the value of / and, hence,
the danger of landslip motion grows.
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CONCLUSION

The fracture mechanics approach is shown to be of practical
importance in the analysis of many interesting geophysical phe-
nomena.
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