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ABSTRACT

Cracks in composite laminates are characterized by a set of vectors, each
representing an individual cracking mode. The vector components are taken as
internal variables in the elastic strain energy function and the elastic
constitutive equations are derived for the inplane loading condition. For
low concentration of cracks in laminates, the residual stiffness properties
are related to the initial elastic constants and the magnitude of the

damage vectors. These equations are then used to predict stiffness reduc-
tions of composite laminates from the observed crack densities. Very good
agreement with the experimental velues is found.
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INTRODUCTION

Damage in composite materials is generally of highly complex nature. How-
ever, extensive work done in the last decade on selected configurations of
composite laminates using various non-destructive techniques has helped
advance the understanding of damage (Hahn, 1979; Reifsnider, 1979;
Stinchcomb and Reifsnider, 1979). Perhaps the best understood damage mode is
the transverse .cracking of off-axis plies in a laminate. Various investiga-
tions, e.g. Masters and Reifsnider (1982), have shown that, both under
static loads and during initial stages of cyclic loading, multiple cracking
of off-axis plies occurs in the form of matrix cracks growing parallel to
fibres. The cracks increase in number with increasing load, or with in-
creasing number of cycles of a cyclic load, and a state of saturation
eventually ensues. The saturation state has some characteristic features,
and has thus been called a characteristic damage state, CDS (Reifsnider and
Talug, 1978). For instance, the saturation spacing of cracks depends on the
laminate configuration (i.e. fiber orientation and lamina thickness and
stacking sequence) but is independent of the loading history. The saturation
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crack spacing has been predicted for various laminates using a shear-lag
model (Reifsnider, Henneke and Stinchcomb, 1979).

Theé reduction in stiffness of laminates undergoing transverse cracking in
off-axis plies has been studied both experimentally and analytically
(Highsmith and Reifsnider, 1982). The prediction of stiffness has been based
on the one-dimensional shear-lag model (Reifsnider, Henneke and Stinchcomb,
1979) , which determines the normal stress in the given direction in the
cracked plies approximately. For a given crack spacing in a ply, then, the
elastic modulus of the ply normal to the cracks is reduced by an amount
corresponding to the reduction in the contribution of the cracked ply to the
overall load carried by the laminate. The laminate analysis is then used to
calculate the overall stiffness constants of the laminate using the degraded
modulus of the cracked pPly. The predictions agree generally with the
experimental values, although occasional discrepancies are found. However,
‘it'is not clear.to what extent the simplifying assumptions in the analysis
affect predictions.

We .shall here present a procedure for predicting stiffness reduction due to
cracking using an entirely different approach. Rather than considering
cracks explicitly in terms of their effects on stress redistributions, we
shall look at cracks as microstructural entities such as dislocations and
voids in metals. The bresence of cracks will then be accounted for by
introducing a set of internal state variables in the mechanical response
functions. The approach along these lines has been developed for a general
case of damage in composites (Talreja, 1983); we shall here specialize

it for transverse cracking of off-axis plies in laminates. Specific equations
rélating the intensity of cracking and stiffness reductions will then be
given for selected laminate configurations and predictions using these equa-
tions will be compared with experimentally observed values.

ELASTIC RESPONSE OF CRACKED LAMINATES

Consider a solid containing m sets of paiallel planar cracks. Let us assign
a vector v(a) to each of the set of cracks, a=1,2,...m . Let the orienta-
tion of a vector v(@ be normal to the planes of the ath set of cracks and
let its magnitude .be given by : =

(@) |2 = =

e My~ B = =, )
where Ne 1is the crack number density, i.e. the number of cracks per unit
surface area, Rc and W, are the average length and the average width of
the cracks, respectively, and fc is a factor that depends on the crack
shape and on the constraint to crack opening provided by the surrounding
material.

Fig. 1. illustrates the case of two sets of parallel cracks in a solid and
shows the two vectors v (! and v(2) that represent the two cracking
modes. The magnitudes of vectors can vary over the solid to account for in-
homogeneous cracking modes.

Consider now cracked composite laminates with following restrictions.

1. Thickness is small,

2. loading is in the plane of laminates, and

3. each cracking mode consists of transverse cracking in
the plies only.
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Fig. 1. A solid containing two sets of parallel cracks.

We thus do not consider other cracking modes such as delamination, fiber
breakage and interfacial debonding.

V(a) , each

i i esented by vectors
The transverse cracking will now be repr Y e g

(a)
i t i cracked ply. Let V
vector oriented normal to fibres in a [ g e
components in a Cartesian coordinate system pla?ed in ;he m}ggizzerzgresent_
i i i tor components as internal vari
laminate. Considering the vec s : v ‘ i
ing the micro (crack)structure, we write the elastic strain energy functi

for the cracked laminate as
(@ o
= W e v
i ( B

where e are the strain tensor components in the Voigt notation with

p=142 and 6 .
i i kin
For simplicity, let us consider one vector V representing a single c%ai ing
i . :
mode in a laminate. Expressing the strain energy function as a polynomia

P , we have il
W= P(e1 re, e ,V1 ,V2)

P will be restricted by the symmetry propeFties

taking the polynomial

asscciated with the

The form of the polynomial
of a laminate. The restrictions are accounted for by

1 3 arian ) ed
integrity bases (invariants) associat

. i
P as a function of the integrity bases { : : i
Eiv:n symmetry. For a polynomial, which is a function of a §ymmetr;ctsecic
grder tensor and a vector, the integrity bases associated wlth.ort g rop N
s etry have been given by Smith, Smith and Rivlin (1963). Using these,

ymm

have the following invariants for our case.
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The most general polynomial P restricted to quadra?ic term§ in ztraln
componenté and guadratic terms in vector components is now given by
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where P0 is a constant and P1

and P2 are linear and quadratic functions
of their variables, respectively.

Using (4) in (5) we get,

w=ke2+kee +k_e

2.2 22 2
T b e R R L R
2
6

2.2 L2 2
hiiseVi ke v

6

9%2%V Vot ke

2
V2+PO+P1+P2 (6)

222 2.2
+ k7e2V1 o k882V2 +k

2
+ ky3®i8Y) vk 00,

Imposing the condition,

W =0 for ep =0 and Vq =0 , we get,

Po =0 (7)
and further,
g_ = Jﬁl—= O for e =0 gives
je) de
b
P, =0 (8)

Applying the stress formula we now obtain,

0 1
g . =C. e = (C +C )e (9)
p Pq q pg Pa/ q
where
" 2k1 k2
Cpq = k2 2k6 (6] (10)
0 0 2k10
and N
2 2 2 2
(2k3V14-2k4V2) (k13V1-+k14V2) k5V1V2
1 . 2 2 2 2
bq = (k13V14»k14V2) (2k7V14-2k8V2) k9V1V2 (11)
Tan— 2 2
[ VY 59V Vs (85 V) Rk V5)

Cpq is the orthotropic stiffness matrix of the uncracked laminate and C1q
corresponds to the contribution due to cracks. Eg. (11) shows that cracking
will, in general, remove the initial orthotropic symmetry in a laminate.

RESIDUAL STIFFNESS PROPERTIES

The stiffness components of a cracked laminate with transverse cracking in
one ply are given by
0
=c’ +cl (12)
pgq Pq pg
It can be shown that for Ccracking in m plies the stiffness components are
given by (Talreja, 1983)

c =c% 4+ c® (13)
P9 pPg | pq

where o= R I
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Fig. 3. Cracks in two plies
a symmetrically placed about
the 0° ply in a laminate.

2. B cross-ply laminate with

Fig.
cracks in the 90° ply.

e us irs consider one 11 ode 1g. show cxo -ply laminate
Let £ (55 d k de. Fig s a ss Ak Ak
. crac g m 2 h
which has cracks in the 90 plies. The damage vector for this case is given by
) ) i 0 (14)
v D(1,0)

Substituting this in Eg. (11) and using Eq. (12), we obtain

2 2 0
(2k, +2k,D7)  (k, +k, D)
2 15)
= il a2y (2kg + 2k D) 0 (
SN 2 =i 6
& 2k D2)
o/ o (ot

. 5
e orthotropic symmetry in the stiffness coefficients is thus retained for
Th

SH e
noae .

. this cracking
i i ted by using the relations:
i The residual elastic moduli can no; be calcula A Y C2
C11%2 7~ %12 EMS T
Bl =y E2 e e
| C22 et (16)
(@)
12 = c
v = —/—— and C12 66
12 C22
From Egs. (15) and (16) we obtain,

g 2 T Ao e 1

Epe D enile, sl 510
(o] 2 Ot 0 (17)
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0 .0
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In Egs. (17) the moduli with superscript O

Next,

in two off-axis plies placed symmetrically about the axis

vectors in this case are B

(1)

and \'4 = D1 (sin® , - cos 8) (18)
V(z) = D2(sine , cos 0) (19)
where 6 is the off-axis angle.
For 6 = 45° the stiffness matrix is given by
[2k1+2k3(Df+D§)] [k2+k13(nf+D§)] [% kS(Dz—Df)]
o - [2kg + 2k, (D2 +D2) ] [$ kg (02 - %) ] (20)

[2k,  +2k 2 2
10* Zkyy (07 + D3]
where only half of the symmetric matrix is shown.

It ds = ymms
kel iiezhtiit’ for D, = D, , the orthotropic s etry is retained. How-
Will,b a' assume that, even for Dy * D, , the orthotropic symmetr

€ retained approximately. Equivalently, we shall assume that the i

constants k and k whi
: 9 ich represent the interactions betwee
and the shear strains in a cracked laminate, are small RS

The residual elastic moduli for this case are given by

E = E(1)+2(Df+D§)[k3+k7(\)(1)2)2—k13\)c1)2]
E, = E2+2(Df+D§)[k7+k3(\)c2)1)2—k13\)21] ~
L R [1“\’(1)2"31] 0 Ci
. 12 T Vi 1+D2)L“E—S‘—J Eygi P al
G, = G?2+2(D‘f+D§)k11

PREDICTION OF STIFFNESS REDUCTIONS

Highsmith and Reifsnider (1982)
=l have reported stiffne i
densities for the following 4 laminates of glass/epox;s e

T 3
aminate 1: (O '903)5 , Laminate 2: (903 ,O)s

Laminate 3: (O ,90)S , Laminate 4: (0, %45)
s
W e
tses:ii;fﬁzzstheddazé for laminate 1 to calculate the unknown constants in
reduction equations (17) and use these t i
: ec : © predict the stif

;zgﬁiﬁzonz for.the remaining laminates. Since the measurement of the s;ejzess
e 1% 1s suspect due to the method used (Highsmith and Reifsnider
Since,t;: shall not concern ourselves with predicting this property Also,

change in the shear modulus is independ ’ :

! t of the ch i
other moduli for the crackin i S v
: g modes in the laminates considered, i
: it sh

suffice to treat the other moduli for the sake of demonstrating,the przgig—

refer to the uncracked laminate.

let i i
us consider two cracking modes. Fig. 3 shows a laminate with cracks

YOI %
tion capability of the method.

The basic data for a single ply and the initial elastic moduli of the
laminates, calculated by laminate analysis, are shown in Table 1.

The squares of the magnitudes of damage vectors, D2 , are calculated using
the definition given by Eq. (1) for the cracking modes in all four laminates,
and are given in Table 2. Also shown in this table are the observed values of
the number of cracks per unit length of specimen. The following procedure is
used in calculating D2

The average crack length, Ec is taken as the width of a specimen W for
cracks in 90° plies, since the observation shows that the cracks span the
entire distance from edge to edge of a specimen soon after initiation

(Highsmith and Reifsnider, 1982) . For the 45° plies the crack length is

taken as W/cos 45° . The average width of cracks, W, 1is equated to the
Ehickness of the plies that contain the cracks, e.g. for laminate 1,
w, = 6ty where ty is the single ply thickness. The crack number density,

Ne is equated to the observed number of cracks per unit length of specimen
divided by the width W .

The factor f_ is assumed to be a function of the crack width to the
specimen thickness ratio and is taken as
nt
0
i 22
Bl (22)
where n is the number of plies containing a transverse crack and t is the
thickness of the specimen (laminate). Due to the lack of information regard-
ing the nature of the constraint on crack opening and sliding, any further
refinement of this factor is not possible at present. We have further assumed
that for cracks ending in the free surface, e.g. in (903 , 0)g laminate, the
constraint is essentially absent, i.e. fc =g
Table 3 shows the three constants found by using the data for laminate 1, and
the predictions of stiffness reductions using these for the other laminates.
The -observed values, as reported in Highsmith and Reifsnider (1982), are also
shown. The accuracy of the predictions may be characterized as very good.

Table 1. Elastic moduli for glass/epoxy lamina and
laminates. Single ply thickness = 0.203 mm .

Moduli E1 , GPa E2 , GPa ‘v12 G12 , GPa
Lamina 41.7 13.0 0.300 3.4
Laminate 1 20.3 34.75 0.112 =
Laminate 2 20.3 34.75 0.112 -
Laminate 3 27..57 27457 0.142 -
Laminate 4 21.79 13.93 0.561 i

ikl
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Table 2. Magnitudes of the damage vectors.

n °w 2 w £
(cr ] o c c
mm mm mm
Laminate 1.
Cracks in 6 90° plies e " 10 945
Laminate 2.
Cracks in 3 90° plies Oal W 9802 il
Laminate 3.
Cracks in 2 90° plies e W Saes O=n
Laminate 4.
Cracks ‘in +45° ply 1:. 27 1.414w | 0.203 0.17
Cracks in -45° ply 0.85 1.414wW | 0.203 | 0.17

Table 3. Predicted and observed stiffness reduction of cracked';iﬁ
Laminate 881 0 % ; Vg : AE2 N
Observed | Predicted | Observed Predicted | Observed | p
2 38.8 38u4 71.0 67.4 0.0
3 174 17.2 49.8 41 .4 723
4 9.4 8.2 & ol 1 i 5.3

k3 =-6.713'GPa , k7 =-0.762 GPa and fk13 =-4.467 GPa
Laminate 1: AE1 = 42.0% , Av12 = 74.3% and -AE2 =.0.6% .
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