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ABSTRACT

The unilateral contact approach is used to model the initial debonding and
subsequent delamination of two-layer or multi-layer symmetric laminated
plates under transverse loads. The mathematical formulation of the ap-
proach and associated finite element model are presented. The bond materi-
al (or adherent) is modelled as a continuum that has a uniaxial (in the
transverse direction) elastic response. The flexural behavior of the plate
is modelled by means of the Hencky-Mindlin type shear deformation theory.
Two sample problems are presented. The relationship between the brittle
fracture mechanics approach and the present approach is also discussed.
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INTRODUCTION

Plates laminated of orthotropic layers are increasingly used in aerospace,
civil, and mechanical engineering structures. This is because by selecting
the lamination scheme the designer can tailor the strength and stiffness of
laminates. If the edges of laminates are not secured properly, delamina-
tion of the layers at the edges can take place during service conditions.
The delamination can occur either due to the presence of transverse normal
tensile stress or due to imperfect bonding between layers. In the latter
case, the delamination propagates under applied loads, especially if these
loads are transverse to the laminate. The present study deals with the
modelling of the delamination growth using the unilateral contact approach
(Signorini, 1933; Fichera, 1972; Duvrant and Lions, 1976; Fremond, 1982;
Toscano and Maceri, 1980; Grimaldi and Reddy, 1982; Ascione and Grimaldi,
1984).
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THEORETICAL .MODEL

In the present study we assume that the plate under consideration is lami-
nated of two identical layers or several layers such that the lamination is
symmetric about the midplane of the laminate. Further, we assume that the
initial delamination is at an edge of the midplane. Because of the assumed
symmetry, we can model the delamination of the upper half laminate from the
midplane (see Fig. la).

—
(a) (b)

Fig. 1. Laminated plate geometry and the load-deflection relations
for the adherent material

LAMINATE THEORY

Consider a plate of uniform thickness h composed of a finite number of or-
thotropic layers with arbitrary orientations with respect to the plate co-
ordinate system. The coordinate system is chosen such that the x-y plane
coincides with midplane, R, and the z-axis is normal to the middle plane.

The displacement field in the shear deformable theory is given by (Whitney
and Pagano, 1970; Reddy, 1980)

u(x,y,z) = ug(x,y) + zg (x,y)
v(x,y,2z) = vy(x,y) + 24y (x,y) ; (1)
Nl = wd e . aY
W= WiX,Y)
where u, v, and w are the displacements along x, y and z directions respec-
tively, u, and Vo are the in-piane dispiacements of the middle plane, and

Uy and ¢y are the rotations about the y and x axes, respectively.

The equilibrium equations of the nlate can be obtained using the principle
of virtual displacements (Reddy, 1980)

Np,x * N6,y =0, N6,x + N2,y =0
Q,x * Q,y * q =P(w) (2)
Ml,x + Mﬁ,y - Q1 =0, M6,x + MZ,y i Q2 =0

where w,, = aw/dx, etc., q is the distributed transverse load, P is the re-
action of the adherent, and Ni»> Q;, and Mj are the stress and moment re-
sultants defined by
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ioMy) = 1,2)o;dz, (Qy,Q0,) = [ (=,.7,,)dz. (3)
(N1’M1) {h/z( ) o4 ( 1 2) lhya X2z
Here o; (i = 1,2,6) denote the in-plane stress components (cﬁ TS T
9y and g = nyﬁ'

i ini i ise i lane of* elastic sym-
ming monoclinic behavior (i.e., existence of one p f S i
£Z§$y) gor each layer, the constitﬁt1ve equations for an arbitrarily lami

nated plate can be expressed as

N; Ay Big | (2 Q Ags Pgs | | Yxz
s : - (4)
M; Bopt Dy A0Sy Q Ars Pagd Uy,
where
ef = Uy x> &0 = Vo yu 500 Ynuy Foiaatie T Wiy il (5)
Ky = Ko = g Ko F il et s s = Wibatiey
W Baxr B2 T Yylye B6 FESKLyl T Sy oxbiilyz R
The plate stiffnesses Aij’ Bij’ and Dij are given by
V4
m+1
(m) 2 i
)= V(1 52,22 dz, (144 1.2.,6), (6)
(A1J’ B]J’ D-IJ) n}]: ,rz Q'IJ ( )
m
Z
m+1
- ) = 6-1, B = 6-1, 1,§ = 4,5). (7)
A1J = 2 J‘ kakBQL] dZ, (a s B
m Zm

M) are the material coefficients of the m-th layer in the plate co-
ggggﬁagig, z, is the distance from the mid-plane to tﬁe.lower surface of
the m-th layer, and ki are the shear correction coefficients.

For the symmetrically laminated plates, all Bjj are zero ?nd 61§ in§25 =
D16 = Dog = Ags = 0. Consequently, the coupling between (Ug,Yo, and

i i i i ishes Therefore, in the
W (i.e. bending-stretching cogp11ng vanis Sy 5
Seég?ﬁ$%g discussion we will not consider the 1np1ang d)sp]acements. Then
the moment and shear force results can be expressed in terms of the gener-
alized displacements as

o4 24, a4y 24y
PUICSE S —n = — pra— 8
b =hywe " llemy =D a tPuy (8)
Oy s 10Uy oW = ™,
Me = Dgs Gim * 5o » @ = B 50t %) > Qg = Ay GG+ &) -

The reaction force P of the bond material, which is treated as an elastic
foundation, can be expressed as

P(w) = K(w) o w (9)

i i i i displacement and is
where K(w) is, in general, a nonlinear function of the : :
a prope&t; of the bonding material. In the present study we will consider
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cases in which K is a finite constant. Figure 1b contains two cases of the

19ad-def1ec§ion re1at19nsh1p. In the first case, the modulus is bilinear
with K # 0 in compression and K = 0 in tension. In the second case, the

modulus is linear but allowed to have only finite t il i
nite deflection Wo in tension). Y Ll

FINITE-ELEMENT MODEL

The finite-element model of Eqs. (2)-(8) can be derived by assumi i -
polation of the form (Reddy, 1984) . e

n n n
Wk ke b L K ay = T Yady (10)

i=1

over an element R® Substituting E i i
: : : g. (10) into the virtual k
associated with the equations, we obtain i

[k11] [k12] [k13] {w}l {E+)
[K22] [Kk23] {x} = {F2} (11)
symm. [k33] {Y}j {F3}
where [K11] = [K11] + [R11],
S deps B d: B L,
11 = -t L
K1J fRe(A55 ax ax t A44 Yy EledXdy > K%} P IRe K(w)dﬁdﬁdXdy
o o6
iz o = i
K3 fReASS o Jgdxdy K1133 W fReA44 by ey
B By oy D

K22 = S Ay BRICS il
i3 fRe(Dll x o ' D6 3y 3y *Pssdydydxdy
3y BYy 3dj By
K23 = | = (G i s
ij ) e (D12 ox oy 1 D66 dy

0y By ddy s
33 = BB R J
5 fRe(DGG ox x T Doy v T A dﬁdj)dXdy

Jdxdy,

1 = =
F] IRequ-IdXdy + fSean)'idS’ Qn = anX + any

3 = o
F{ fse Masdids, Mpg = Mgny + Many . (12)

The element stiffness matrix in (11) is of the order 3n b i
y 3n, where n is
the number of nodes per element. For example, when the four-node rectangu-

;arlglement is used, then the element stiffness matrix is of the order 12
y s
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The element equations in (11) can be assembled, boundary conditions can be
imposed, and the equations can be solved in the usual manner (Reddy, 1984).
As is well known among researchers working with the Mindlin plate element,
reduced integration of the shear energy (i.e., coefficients of Agq and Agg)
is necessary to obtain accurate results. We shall investigate this effect
in the numerical examples to be discussed next.

NUMERICAL EXAMPLES

Here we present several sample problems, including the classical problems
of plates on elastic foundation (called bilateral contact problems) to val-
idate the finite element presented herein. All of the computations were
made in double precision on an IBM 3081 processor. The shear correction
factors are taken to be kf = k% = 5/6.

1. Two-layer isotropic plate subjected to symmetric distributed line load
at the edge (see Fig. Z

Because of symmetry about the midplane, only the top layer, along with the
bond material, is modelled using uniform meshes of 1 x 8 four-node elements
and 1 x 4 mesh of nine-node elements. The following parameters were used:

d,
b

a
2R
Table 1 contains the nondimensionalized deflection versus the distance
along the long side. The analytic solution (from [11]) is compared with
the finite-element solution with full and reduced integrations. Full inte-
gration means the usual integration (2 x 2 for the linear element and 3 x 3
for the quadratic element) and reduced integration means one order less
than the usual. 1In Table 1, R refers to the integration scheme in which
full integration is used to evaluate the bending stiffness and reduced in-
tegration is used to evaluate the shear stiffness, and F refers to the
integration scheme in which full integration is used to evaluate both the
bending and shear stiffnesses. From the results it is clear that, in gen-
eral, reduced integration gives the best results. It is also clear that
refined meshes and higher-order elements are less sensitive to the integra-
tion order than coarse meshes and linear elements. The finite element so-
lution is in good agreement with the analytical solution, which is based on
the classical theory of infinite beams on elastic foundation.

=g =16,5K=1o2, g (13)

Table 1 Comparison of the dimensionless transverse deflections
W=wD x 103/qoa“) for the rectangular plate of Problem 1

X Analytical Finite Element Solution
a solution 4-Node(F) 4-Node(R) 9-Node(F)  9-Node(R)
0.000 20.188 16 .552 19.993 20.154 20.367
0.125 12.563 11.601 12.553 12.650 12.691
0.250 6.500 7.296 6.499 6.635 6.498
0.375 2.375 3.901 2.341 2.440 2.269
0.500 0.001 1.397 0.100 -0.015 -0.043
0.625 -1.075 -0.394 -1.283 -1.218 -1.204
0.750 -1.35 -1.712 -1.704 -1.670 -1.622
0.875 -1.55 -2.786 -1.762 -1.741 -1.719
1.000 -1.54 -3.782 -1.704 =173 -1.7156

2. One-dimensional delamination of a two-layer isotropic plate subjected
to a distributed Tine load at the edge (Fig. 3)
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This problem is similar to one considered above exce initi
r ) = pt that initiall
Eherg is deboqd1ng'at the edge x = 0 for all y, and the strength of tge
ond1@g mgter1a1 (i.e., adherent) is finite. Let the initial length of the
qe1am1nat1oq be 20, and let y be the surface energy per unit area (of open-
ing). _Ne first use the fracture mechanics approach (mode I of fracture) to
determine the load-delamination relationship.

P [
Pne 2h
Kis\ === b} X
. h = .
b S
4 7 :
=T 0 T £5-2 1
T a 1 qO
Fig. 2. Rectangular plate on Fig. 3 Delami i
elastic foundation ° p]J?:nat1on ey 4

lpgydg!amination propagates when the energy release equals the surface en-

G=+vyb (14)
where G is the energy release per unit length of opening, which is given by
6 n. 4D

a1 (45

II being the total potential energy, and dg is the infinitesimal length

along the opening. The total potential ene f i
equal to the work done by the gpp]ied 1oad,fgy e L R

1 q223p
o= -+ (forc di . SO
5 ( e)(displ.) &0 (2> 10) (16)
From Eqs. (14) - (16) we have
_ 72 DY
2 N (2> 2,) (17)

which gives the length % of delamination as a functi i i
f on of the distrib
load qo. The load-deflection relation is given by Grimaldi and Reddyftf¥582)

W
— s A= 2 (§D=10/L)

. ) 0w
Q= (18)
1
—— . L > 3
Al S g
L= V/20/y ,Q=qy/y , W=51, 8= L (19)

This completes the derivation of the analytical solution.

IThe delaminated i
r part of the plate is treated as a cantilever of len th
flexural rigidity Db, and force qob at the free end. ’ :
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In the present (i.e., unilateral contact) approach, the initial delamina-
tion is modeled by setting K = 0 in the elements that are used between x =
0 and x = 2 . The new delamination length, &, is determined by checking
the strain energy of the adherent against allowable energy vy for the mate-
rial. When the strain energy of the adherent exceeds the allowable value,
then the element is assumed to be delaminated. Of course, for accurate
prediction of the delamination length, the elements in the vicinity of the
opening should be small enough (at least equal to the wave length, A" =
4D/K). The energy y can be related to the allowable deflection w, by
using v = strain energy = (1/2)Kw§,

25
I O (20)

The following iterative scheme is used in the finite element analysis:

(i) Begin with the initial length £ of the opening, and identify
an interval, % < X < % + 5A, in which the mesh is refined.

(ii) Solve the finite element equations for specified W at the
edge x = 0.

(iii) Check to see if the deflection w at x = 25 is greater than
the critical deflection, wy. If no, no delamination oc-

curred.
(iv) If w > w,, delamination occurred. Then the first element in

the interval, % < X < % + 5\, is assumed to have delamina-
ted, and compute the reaction force Q there. Then, recon-
struct the finite element mesh with the new delamination
Tength 2, (see Fig. 4), and repeat steps (ii) and (iii).

—— 89— 5% =
I T

{ SR ¢ I I JIRNEE I 1 1 I 3| I I LI T 1 I | R |

f— Lo—t 5Ap— gy

Fig. 4. Finite element mesh for the delamination problem of Fig. 3

Table 2 contains the results of the finite-element analysis and the an-
alytical solution (18) of the fracture mechanics approach. ‘In Table 2, N
denotes the total number of elements and Nr denotes the number of elements
in the interval of length 5\x. The finite element solution based on the
unilateral contact approach is in good agreement with the analytical solu-
tion. A complete agreement cannot be expected because, Eq. (20) is valid

Table 2 Comparison of the finite element solution with the
analytical solution of Problem 2
(a/h" = 105, a/b = 10, v = 0.3, a/x =2 x 103, Eols 0.78)

Analytical Finite Element
W Eq. (18) Nr = 20, Np = 15 Ny = 40, Np = 30
g Q g Q g Q
0.5 0.783 1.04 0.783 0.987 0.783 0.984
1.0 1.000 1.000 0.981 1.087 0.987 0.989
550 2.236  0.447 2.218 0.420 2.223 0.419
10.0 3.160 0.316 3.122 0.304 3.153 0.307

AFR VOL 4-T
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in the limiting case of K + = and i
© A > 0. Fiqure 5 contai
versus W, and £ versus W, as obtained by the two approachgz £ Blots bl

i) : i
o Finite element
1 — Analytical &
0 2

Ul

0. \O\o\o
]_

0. . y o’l

0 2 3 &% & 1o I S e
W W

Fig. 5. Plots of W versus Q and £ for the two-layer plate in Prob. 2

3. Two-dimensional delamination of a two-layer square plate

:sgsewe ﬁgn:;SEQGatﬁggetEensr?] (and difficult) problem than one considered
. T Lthe delamination begins from a
and propagates in the midplane of the 1amigate (see Fig?rg:; o e el

?ﬁ assume that the initial delamination
bugwxﬁ;21g1?{v6b. The mesh ip the region beyond the initial square area
b ] e wavelengths distance is refined. The delaminated new are

e element mesh are shown in Fig. 6c. We use the iterative proceg

ure described earlier to d i =
results are presented in T§E$gm%Te i o ol i xy/L' TS

Table 3 Finite element solution of Probiem 3

a a a
=105 = 10 = - ;
h s s 5.22, 0. = = 7 )
X \Y 3.5 EO 0.522, n -0.738

W Q & n
1 0.906 0.522
. 0.738
2 1.120 1.037 0.915
. 1.270 2.000 1.842
1.467 2.640 2.470

I £y Sak— 2
i ™
W = i
50 BE=="N =+
W i \

(b) (c)

Fig. 6. Geometry and finite elem
ent mesh f t i i
the square plate in Prob. 3 SHENS SETE RGN o
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CONCLUSIONS

The unilateral contact approach is employed to model delamination and de-
termine the growth of the delamination. A shear deformation plate theory
is used to develop a finite element model for symmetrically laminated
plates which have defective bonding at the midplane. In the case of one-
dimensional delamination, the fracture mechanics approach and the present
approach are related and the results are compared. Application of the ap-
proach to laminated composite plates is straight forward.
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