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ABSTRACT

An attempt is made to combine Damage Theory and Fracture Mechanics. The strain softening
at the crack tip is realized by decreasing the elastic modulus in relation to the strain energy
density locally absorbed, whereas both stable and unstable crack propagation are independently
simulated. It appears clear that the two extreme situations of ultimate strength collapse at the
ligament (small size) and brittle fracture-(large size) are connected by a transition. The ability of
describing such a transition shown by the Fictitious Crack Model and by the Strain Energy
Density Theory are eventually discussed.
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INTRODUCTION

The process of damage and fracture in concrete structures develops in subsequent stages.

1) At first, a damaged zone occurs and expands in the weakest point of the structure, where the
material begins to soften. Such a zone may be considered isotropic and non-homogeneous, with
a degraded elastic modulus dependent on the locally absorbed strain energy density.

2) The damaged zone, besides non-homogeneous, becomes anisotropic and the stresses relax
prevailingly in one direction, which is that orthogonal to the developing crack.

3) A material discontinuity is eventually nucleated. At this stage, the anisotropy of the system
can be considered as producted by the crack only, while the remaining part of the damaged zone
may be considered as isotropic.

4) The crack propagates and, at the same time, the damaged zone expands. Obviously, they
interact so that each of them is affected by the other failure mechanism.

The expansion of the damaged zone and the propagation of the crack have been described sepa-
rately so far, respectively by Damage Theory and Fracture Mechanics. The former describes the
mechanical damage of the material by decreasing the elastic modulus (Lgland, 1980), whereas the
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latter considers the energy necessary to create a unit crack surface (Hillerborg, Modeer and
Petersson, 1976). An attempt will be made to combine these two concepts and attention will be
focused on the scale effects, which rise due to the co-existence of parameters with different
physical dimensions. In fact, as has been recently shown by Carpinteri (1981, 1982-a, 1982-b),
the usual size effects occurring in Material Strength can be explained with the combined applica-
tion of Limit Analysis, Fracture Mechanics and Dimensional Analysis.

SOFTENING AND FRACTURE

Several authors have proposed softening constitutive laws connecting strain (or strain rate) with
relaxed stress (or negative stress rate). Although these stress-strain laws are extremely conve-
nient to be utilized as a computer input, they describe the progressive damage of concrete only
on an average, and do not catch a phenomenon--crack formation—which is so greatly localized
and anisotropic. In other words, they simulate the propagation of a microcracked zone and the
fracturing process results to be smeared instead of being discrete.

The Fictitious Crack Model by Hillerborg, Modeer and Petersson (1976) assumes that the widthw
of the fracture zone in the tensile direction is originally equal to zero, whereasit is different from
zero while it is actually developing. Stress at the softening stage, therefore, will be a function of
such a width (Fig. 1-a).
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Fig. 1 - Fictitious Crack Model.

Changing the abscissa axis as the unstable stage begins gives very important theoretical conse-
quences. Dilatation, in fact, is a dimensionless quantity, while the width of the fracture zone is a
quantity with the physical dimensions of a length. Size (or scale) effects in Fracture Mechanics
can be explained by this transition. In fact, the area under a o-e curve represents a dissipated
energy per unit volume, thus having the physical dimensions of a stress [F] [L]~2. It is well-
known that classical strength criteria, as Beltrami’s Criterion limiting the strain energy den-
sity and Von Mises’ Criterion limiting the distortional energy density. substantiallv set a limit
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to an equivalent stress. On the other hand, the area under a o-w curve represents a dissipated
energy per unit area, thus having the dimensions of a surface energy [F1[L]™'. Such physical
dimensions are unusual in the field of traditional Solid Mechanics, whereas they reflect well-
known concepts in traditional Thermodynamics. It is indeed the transition from a continuous to a
discontinuous system which requires the introduction of such quantities. The area under the o-w
curve is the fracture energy (Fig. 1-a):
1 KZ
ng_auwcg—’ (1)
E

where E is the elastic modulus and Kc the critical value of the stress-intensity factor. gp repre-
sents the energy necessary to have a unit crack growth.
Several authors have assumed a crack model similar to that by Hillerborg, Modeer and Petersson
(1976). Gerstle, Ingraffea and Gergely (1982) generalized the Fictitious Crack Model to mixed
mode crack problems and considered both normal and shear stress on the crack surface as func-
tions of both the discontinuities in normal and tangential displacement. Bazant and Oh (1981)
transformed the o-w descending law into a o-€ softening law; they simply divided the crack
opening displacement (COD) w by the characteristic width of the crack band forming the frac-
ture process zone. Wecharatana and Shah (1983) proved that the value w, of the critical COD
strongly affects the length of the process zone, whereas the latter is non-sensitive to the shape
of the o-w diagram. Visalvanich and Naaman (1982) proposed a generalized o-w law for fiber
reinforced mortar and plain concrete, which reproduces the experimental results very well.

DAMAGE AND FRACTURE

It is not yet clear whether the fracture toughness properties are included or not in the material
constitutive law. This means that it is difficult to say if a unique g-e softening law does exist, or
only a unique o-w descending law, as asserted by Hillerborg. Recently, a model with a unique
o-€ descending law coupled with an independent fracture criterion was proposed by Carpinteri
and Sih (1983). In such a model, the softening at the crack tip (Fig. 1-b) is realized by decreasing
the elastic modulus in relation to the strain energy density locally absorbed, whereas both stable
and unstable crack propagation are adequately and independently simulated.

The damage of the material at the crack tip and the crack growth increments are computed at
each step on the basis of a uniaxial linear elastic-linear softening stress-strain relationship (Fig. 2),

Young’s modulus : E = 35,800 MN/m?
Ultimate strength : o, = 3.13  MN/m?
Ultimate strain P = 487x10-4
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Fig. 2 - Strain softening constitutive law.



2804

according to which the stress may increase up to the ultimate strength (point U of Fig. 2), while -

the strain increases proportionally. Consequently, only the strain may increase, while the stress
decreases linearly down to zero (point F of Fig. 2). If the loading is relaxed when the representa-
tive point is in A (Fig. 2), the unloading process is assumed to occur along the line A0, so that the
new bi-linear constitutive relation will be the line OAF. No permanent deformation is included in
such a model, but only a degradation of the elastic modulus. While for a non-damaged material
element the critical value (dW/dV)C of the strain energy density is equal to the area OUF, for a
damaged material element with representative point in A the degraded critical value (dw/dV)g
is equal to the area OAF. The above described model is extended to the three-dimensional field
using the actual value of the absorbed strain energy density (dW/dV) as a measure of damage.
The Strain Energy Density Theory is applied to evaluate the crack growth increment at every
loading step, as proposed by Sih (1973; 1974). It is based on the following fundamental hypo-
theses.

1) The strain energy density field can always be described by means of the following general
relationship:

S

(dW/dVv) = — | (2)
r

where the strain energy density factor S is a function of the angular coordinate 8 and, generally,
of the radial coordinate r.

2) According to Beltrami’s Criterion, all the elements in front of the crack tip, where a strain
energy density higher than the critical value (dW/dV)C has been accumulated, are due to fail, so
that the crack growth increment Aa can be expressed by the formula:

S
a= — (3)
(dW/dV)q
where S is the actual value of the strain energy density factor.
3) When the crack growth increment is such that:
SC
Na=rog=—""— (4)
(dW/dV) ¢

the unstable crack propagation takes place.

Sc is supposed to be a material constant and represents the strength of the material against
rapid and unstable crack propagation. It is connected with the critical value K of the stress-in-
tensity factor by means of the relationship (Sih, 1973; 1974):

K¢

Sc = (5)
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COMPETITION BETWEEN COLLAPSES OF A DIFFERENT NATURE

The three-point bending test of Fig. 3 is analyzed as structural geometry. If we apply Buckin-
gham’s Theorem for physical similitude and scale modeling and consider the energy (dW/dV)q
and the specimen width b as fundamental quantities, it will be possible to define the dimen-
sionless load:
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where § is the deflection.
When material properties and geometrical shape are kept constant, function (6) is simplified as
follows:

P 8 S
- =q1|—, —_] . (7)
(dW/dV) . b2 b’ (dW/dV):b
Thus, the argument S* appears in function II, in addition to §/b:

S r

C C

* = —— ==k (8)
(dW/dV). b b

Argument S* is produced by fhe different physical dimensions of (dW/dV); and S; and de-

scribes the brittleness of the structure synthetically. Both material properties and structural

size appear in it.

P (Load)
l & (Deflection)

r

2 b
Through crack a, =b/3 -

Fig. 3 - Three point bending test geometry.

The dimensionless P-§ diagrams are reported in Fig. 4, varying the structural scale. When the
critical value S of the strain energy density factor is achieved, the curve drops down to zero.
At that time, in fact, the unstable crack propagation takes place and the structure loses its
loading capacity completely. By increasing the size the dimensionless maximum load decreases
and the crack instability tends to anticipate the structural instability, which would always occur
for P = 332.90 (dW/dV). b2. The points of crack instability in Fig. 4 are found by assuming
a critical value S, of the strain energy density factor equal to 7.85 N/m. By applying the rela-
tionship (5), it corresponds to a critical value K¢ of the stress-intensity factor equal to 1.41
MN/m¥2 | which is a pertinent value for concrete (Carpinteri, 1981).



2806

Dimensionless Load, P/(dW/dV)_b?

400.4 +
3432 | structural instability
_—]
286.0 | /’
\
\
228.8 | AN
\
\
\
1716 | N
114.4 l<—— crack instability
Slel =] e £
o~ o (3] 5] o
s2.2 - [/ §|gl 2| 8 e
nj Il I il
ol Ne) el Kol Ke]
0.0 I 1 1 )
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Dimensionless Deflection, §/b x 103
Fig. 4 - Dimensionless load-deflection response.
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Fig. 5 - Transition from ultimate strength instability to crack instability.
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The ratio between measured K and true K¢ (*) is reported in Fig. 5 as a function of the dimen-
sionless specimen size b aj /Ké (**). From Fig. 5 it appears clear that the two extreme situations
of ultimate strength collapse at the ligament (small size) and brittle fracture (large size) are con-
nected by a transition, which can be described by both Fictitious Crack Model (FCM) and Strain
Energy Density Theory (SEDT). It is worth noting that the FCM prediction overestimates the
limit load for small size while it tends asymptotically to the true value of Ko—without ever
achieving it—for large size. On the other hand, the SEDT predicts the limit load for small size and
the true value of Ko for large size exactly.
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(*) The measured K, is the critical value of the stress-intensity factor obtained at the maximum
load bearable by the specimen, whereas the true KC is the critical value of the stress-intensity
factor considered as a constant material property.

(**) The dimensionless specimen size b ¢2/K2 is equal to 1/s%, b/€cy or 1/nS*, where respec-
tively s is the brittleness number defined by Carpinteri (1982), ¢ is the characteristic length
defined by Hillerborg, Modeer and Petersson (1976) and S* is the dimensionless number defined
by Carpinteri and Sih (1983).





