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ABSTRACT

A statistical theory of failure considering creation of a random fracture
surface and based on an approach of averaging over a set of all possible
fracture surfaces is applied for the toughness characterization of concrete
and formulation of global failure criteria. The size effect on the fracture
toughness for brittle failure of concrete is accounted both macroscopically
and microscopically. The proposed probabilistic model accounts for both the
global stress state and the stochastic nature of the material’s
microstructure through the probability of failure and the probabilistic
measure, respectively.
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INTRODUCTION

Fracture toughness for brittle failure of a homogeneous material can be
determined utilizing the Griffith’s criterion for crack instability. Consi-
dering a heterogeneous material, however, such as concrete where a random
strength field is encountered, a more appropriate fracture toughness model
has to be formulated. To accomplish this task the effect of size viewed both
macroscopically and microscopically has to be determined and accounted for.
Not only the accumulated strain energy released at failure but also the inhe-
rent stochastic nature of a heterogeneous material will help establish
reasonable similitude criteria.

The similitude of stress fields can be expressed in terms of the stress in-

tensity factor K, a known function of the applied stress 0 and a geometri-
cal factor (%/h), where ¢ is the crack length and h the specimen size. The
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use of either the critical stress intensity factor K or the critical energy
release rate J may only partially describe the similarity conditions. They
do not describé, for example, the well established experimental dispersion
of key parameters, i.e. the critical value of applied stress and crack length
at failure and their dependency on aggregate size. Test results in brittle
fracture are usually inconsistent and show the widest scatter compared with
other macroscopical studies, such as irreversible or elastic deformations,
mass and heat transfer, etc. Therefore, the stochastic nature of the micro-
structure of concrete has to be accounted for in order to establish realistic
similarity criteria. This fact raises serious questions regarding the appli-
cability of the Griffith-Irwin’s fracture mechanics approach to aggregative
materials (Griffith, 1924; Irwin, 1957) and the validity of direct extrapola-
tion to larger concrete structures.

Weibull’s statistical theory of strength for brittle materials (Weibull,
1939) associated with the '"weakest 1link" approach and later modified by
Bolotin (1961) and Freudenthal (1968) is, of course, a pioneering work of im-
mense importance. It is based on criteria of failure at a point other than on
the entire fracture surface. However, failure of aggregative materials like
concrete does not depend solely on the largest flaw but it is a result of se-
quential local failures and microcracks that merge. With this respect, a
statistical theory of failure which considers creation of a random fracture
surface resulting from merging of local defects and a method of averaging
over a set of possible fracture surfaces has been proposed by Chudnovsky
(1973, 1977). An application of this approach for the toughness
characterization of concrete and formulation of global failure criteria is
presented.

STATISTICAL THEORY OF GLOBAL FAILURE

A statistically representative sample set of observed fracture surfaces
from an ensemble of a large number of macroscopically identical four-point
bending notched cement-mortar specimens is shown in Fig. 1. It represents a
set of crack trajectories w(x) for plane-strain conditions. Statistical homo-
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Fig. 1. Representative sample set of crack trajectories
w(x) for pure bending.
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geneity in.the lateral direction is reasonably satisfied. For a given notch
depth to height ratio %/h and sand size d, the set Q. can be considered as a
statistical sample out of a set 2 of all possible fracture surfaces Qul, Wy
...,wn,...) for each specimen in the considered ensemble.

In a homogeneous medium, bands &8 of crack trajectories (quasi-intervals
according to Wiener’s terminology) are considered instead of single crack
trajectories. The band width is equal to or larger than a representative
volume size sufficiently large compared to the characteristic aggregate size
d. These bands can only describe the "global" roughness of the random
cracks. To distinguish the "local" roughness of a crack trajectory w, an
appropriate probabilistic measure U(?) of AR is introduced.

Then, the probability of occurrence of the random event of failure P{F} for a
continuum can be written as (Chudnovsky, 1973):

P{F} = jQ Plwl du(R) (1)

The probability of failure P[w] along a given crack trajectory ® can be
defined as a functional of stress, strain, strength etc. along  , based on
a realistic criterion of failure for a heterogeneous material (see next sec—
tion). The probabilistic measure p(Q) derived from statistical analysis of
the observed crack trajectories quantitatively describes their "local" rough-
ness. Statistical analysis of the preliminary experimental results
(Chudnovsky and Perdikaris, 1983) indicates that Wiener’s measure and inte-
gral may be used for calculation of (1). It is worth noting that Wiener’s
measure for any set of smooth functions representing crack trajectories is
equal to zero. In other words, Wiener’s measure is concentrated exclusively
on locally rough diffusion-type crack trajectories. Thus, it selects a cer-
tain class of random funtions which realistically reflect the nature of frac-
ture process in aggregative materials.

FRACTURE TOUGHNESS MODEL

In the case of brittle failure of a homogeneous material, Griffith’s crite—
rion for crack propagation can be described by the necessary condition

J > 2y (2a)

and the sufficient condition
3J/32>0 , (2b)

where J is the energy release rate and Y the surface energy. Since, for the
considered toughness tests of four—point bending specimens, condition (2b) is
always satisfied, condition (2a) becomes the necessary and sufficient condi-
tion for crack instability in a homogeneous material.

Due to fluctuation, however, of the random field of strength (surface energy)
Y in a heterogeneous material it is possible that ecriterion (2a) is not met
at all points along a possible fracture trajectory (see Fig. 2). Therefore,
for a heterogeneous material Griffith’s criterion is not adequate and a more
appropriate crack instability criterion has to be formulated.

The random event of failure, {F}, along a given crack trajectory w(x) can be
defined as follows:
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Fig. 2. Possible fracture trajectory.

for all x€[%, h], where % is the existing crack length and h the height of
the beam specimen. If the interval [Q2, h] 1is divided into steps Ax larger
than the radius of correlation r_ of the random field vy , the elementary
events J>2Y in Eq. 3 are mutuallyoindependent.

Since only one continuous fracture surface ®, has been observed in each
specimen (Chudnovsky and Perdikaris, 1983) (see ﬂig. 3), appearance of two or
more fracture surfaces in each specimen can be considered as mutually
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Fig. 3. Side view of fracture surface in a
notched mortar beam specimen.

exclusive events for the given testing conditions. Therefore, according to
Eq. 3, the probability of failure along a given trajectory

N
P Q{06 06 2 276y wG))}

N
L-7 N {06y, wix)) < 2y CHRNCIN

P{FAw} = Plw]

4)

can be expressed as follows:
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Substituting summation by integration we get:
h dx
Plw] = exp - j P {J(x, w(x) < 2y (x, w(x))} oy o
o

2

where J(x, w(x)) and Y(x,w (x)) are both random quantities.

If J(x, 0) stands for the energy release rate for the rectilinear path and we
assume small deviations of the crack trajectory from the rectilinear path, J
may be approximated as (Chudnovsky, Loginova and Shariber, to be published):

2
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where A is a constant. For pure bending, J(x, 0) in Eq. 7 is given by the
following expression:

2
3, 0) = Bha &S, (8
b h

where b and h are the specimen’s width and height, M is the applied moment
and w(l%?&) a known geometrical factor (Tada, Paris and Irwin, 1973).

To completely characterize the random surface energy field Y(x,w (x)), which
is the main source of roughness in the crack trajectories, its multidimen-—
sional joint probability density distribution function has to be determined.
However, since crack propagation follows the minimal values of y-field, the
"Weibull" distribution (Weibull, 1939) for the minimum values of Y may be
justified in this case.

If the location parameter Y (minimum value of strength) of the "Weibull"
distribution is taken as zero, the one-dimensional cummulative distribution
function of the Y-field along a crack trajectory is given by:

0 , for Y<O
F(Y) { -(H® €9)

1-e Yo , for y>0

The other two Weibull parameters, that is Yy, and ¢ (scale and shape para-
meter, respectively) can be determined from the experimental results.

Utilizing expressions (7) and (9), the probability of failure P[w] from Eq. 6
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reduces to:
f(M) 10 20 (N-m)
h 2 !
Plw] = exp { - J [exp - (”i 36500,% 0y ax(J(X 0),* “’<’2‘)]i—x (10) -4 l -0. 127(k -in)
9 0 2 o . : \, R AU ),
Substituting now the expression for P[w] in Eq. 1, the total probability of 301 T
failure P{F} is written as:
h J(x 0) & dx b w (X)dx i
P{F} = exp {—J [exp - —=—7)] ;—-} J [exp - J B(x) Jan ) | 20 -
2 "o O g 3 ro Fo (11)
where R(x) = OO\(J(X O)) [exp - (J(X’ O)) ] (11la) 10 =

The Wiener-type integral fQ in Eq. 11 can be calculated in closed form
(Gelfand and Jaglom, 1956).

e f
i -20
i Finally, substituting expression (8) in (11) and performing the integration 0.05 0.10 0.15 0 M (k-in)

over (2, the total probability of failure as a function of the applied moment
M, the statistical parameters o, M and the microscopical and macroscopical
geometrical characteristics of the sSpecimen is expressed as follows:

Fig. 4. Effect of o and h/ro on £(M) (L/h =0.25)%.

0 ,» for M<O 10 20({N-m)
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where £ = _hx and n(§) = —5 (12a) 80 - 7
Y (L/h)
The provatility density distribution function for failure f(M) can be calcu-
lated from expression (12) after determining the Weibull parameters © and 60 |- —

M 5 At this point, utilizing the rather limited available test results it
s8ems adequate to assume for the four-point bending cement-mortar specimens a
shape parameter o = 4. For M = 14.3 Nm(0.127 K-in), which corresponds to a
notch depth to height ratio of %h = o. 25, f(M) is plotted versus M for se- 40
lected values of o and h/r in Fig. 4. The effect of the characteristic
size of aggregate d is shown through the ratio h/r . For given ¢ and h, de-
creasing the size of aggregate (that is increasing h/r ) results in increas-—

ing the mean and decreasing the variance of M, as expected. Finally, the 20 T
density function f(M) is plotted in Fig. 5 for o = 4, h/r_ = 35 and various

values of M showing the effect of notch depth on the fracture toughness of

cement-mortar specimens. J

1 1
0.05 0.10 0.15 M (k-in)
CONCLUSIONS
« 8. o =4, h/r = 35).
A new approach with very promising results is described towards the formu-— Fig. 5 Effect of Mo on f(M) ( s h/ 2 )
lation of a fracture toughness model characterizing the brittle failure of a
heterogeneous material, in particular concrete. More extensive experimental
data on fracture toughness tests of concrete are definitely needed to deter-
mine the appropriate Weibull parameters on the basis of the statistical ana-
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lysis of the test results.

It is important to emphasize that the proposed model accounts for both the
global stress state through the probability of failure P[w] and the statisti-
cal nature of the material’s microstructure through the probabilistic measure
#(R2). The apparent diffusion features of the observed crack trajectories
(Chudnovsky and Perdikaris, 1983) indicate that the "Weiner" measure can
adequately describe their local roughness.
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