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ABSTRACT

A statistical analysis of the compression-fracture stress of commercial

glass cylinders was made, and the parameters of Weibull's normal and loga-

rithmic-normal frequency functions are estimated by means of maximum Tike-

lihood method. The dispersion of these parameters is determined using the

information Fischer matrix, and simulation. The influence of the specimen

size is determined experimentally and is qualitatively in keeping with

Weibull's predictions. The x2 is acceptable for the different frequency

functions used. But a theoretical analysis shows that the Weibull Frequen-
cy function is the only one valid in fracture statistics.

KEYWORDS

Fracture statistics; Weibull frequency funct1on, maximum likelihood; dis-
persion of parameters; specimen size.

INTRODUCTION

In uniaxial compression of brittle bodies, Jayatilaka and Trustrum [1] pre-
dicted a normal distribution with mean independent of volume and variance

inversely proportional thereto. A comparison of this prediction using

compacted cement cylinders broken by compression was made by Kittl and Al-

dunate [2], and the result thereof was that the x2 test does not reject the
Weibull or the normal distributions. But the normal distribution is a
Tittle better than the Weibull one. The mean was independent of the volu-
me, as was the variance. In the case of the same material subjected to
traction [3] the same thing happens as . under compression. The justi-
fication of the Jayatilaka and Trustrum prediction is that the final failu-
re of a brittle material, under compression, occurs only after a certair
proporticn of the cracks have failed, where this proportion is a mate-

rial property. The general view of the problem is complex because though

2743


User
Rettangolo


2744

it is possible to justify the independence of the volume adopting the Jaya-
tilaka and Trustrum model, this is not true for the case of traction. In
keeping with the preceding observation it is possible that glass is more
1ike a Weibull body under compression. The Kittl and Gunther justification
[3] for the independence of the volume under traction is that, in the ce-
ment paste, the size of the defects does not increase with the volume and
the Weibull statistics must be modified, and it is assumed that this is not

true for glass. This work deals with these last points and with uncertainty

in the determination of the parameters.

THEORETICAL ESTIMATION OF THE PARAMETERS OF THE DISTRIBUTIONS.

Under compression the Weibull cumulative fracture probability is [2]:

fie) w - enrd s A7) (1)

where o is the failure stress, o, , o, and m are Weibull's parameters and Vo
is the volume unity. An estimation of m, g, is made by Trustrum and Jaya-
tilaka [5] but with o, =0. We assumed here that o, # 0.

The 1ikelihood function is

n
Lem,o,o) =] Fla;ma,a) (2)
L=4
where f(o) 1is the probability density function. Then the maximum-1ikeli-
bood estimators of the Earameters m, oL, 0o are the random variables
m = dy (ot 2l cn); g, =d, (01, PRI G = d3 (o7, s on) such

A . .
that the values m , SLL, GoL maximize L(m, o, o).

The point where 1ikelihood reaches a maximum is a solution of the three
equations
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A random sample of size n from Weibull distribution has the density

L=1T =¥ el )"“"exp{-—vf—(—‘“;f“)m}(z;)

t=1

To find the location of its maximum we compute
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These equations can be solved by the Newton-Raphson method.

Maximum-Tikelihood estimators are asymptotically efficient estimators and
BAN (Best Asymptotically Normal) estimators, consistent estimators 'and
squared-error consistent estimators, functions of the minimal sufficient
statistics, and the estimators of the functions are a function of thg es-
timators. For large samples the maximum-likelihood estimators approxima-
tely distributed by the multivariate normal distribution with means m, o[,
ogs have a Fischer information matrix for n elements nR in the quadratic
form [4], where

=-E(31L“—.>Pg(.€a;:'ﬁ'm) » {8} ={m. %, 0} (6)

and E means the expected value operator. The variances and covariances of
the estimators are 1/n R-1. The rijj matrix elements are:
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For the estimation using the method of least squares we take into account
equation (1). Hence
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if, 09 S0p 5 ... = o, Then as shown by Jayatilaka [5] the expected
value of F(Gi) with less biasing is (i - 1/2)/n, the linear model is

Yoz o ([ rmgmgm )] s @y e (o) v e (o)

1- (i-0.5)/m

where E(€1) =0, €5 is the error arising from the difference between the
observed value of F(o1 and its expected value. Then the least square
"N

estimators that maximize the correlations coefficient p arefi_, & 510 :
Therefore: S 03 o

LYidn(G-0a)- 2DV Pyohn Ot = o 5)

la)
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~ ~ 2 2
f(r\ms Oos, Tis ) maximum (£« 4‘0)

Under the assumptions of the Tlinear model, that is to say E(e) = O and
Var (51) = 02, the properties of least square estimators are that they
are minimum-variance unbiased. But eqn (9) does not comply with the T1i-
near-model hypothesis. For the estimation by the method of moments we
proceed as follows: The first moment v, 1is called the mean of o, and the
second moment is called the variance
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The set moments are “1 = 1/n E 01, ﬁz =1/n-1 =z (01 - ﬁl) 3 hence the
equations of moment are “1 = ul, “2 = Uy, The1=%hird moment U3, called a

measure of asymmetry, is not used. Therefore the third condition consists
of using m obtained by least square.

Under quite general conditions it can be shown that the estimators derived
by the method of moments are consistent and asymptotically normal.

In the normal distribution the cumulative probability of failure is

P
F(F)=_5¢1‘/;ﬁ ]exP{——-———‘j_f’;) } dﬂ" (12)
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In the Tlogarithmic normal distributions
o 2
1 1 (Ina- o) }
)= Ll expil. Lo s ) T (13)
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Maximum-1ikelihood estimators of the parameters o and g are
T ~ )
me‘f , B i- &) (14)
(w4 i=1

Regarding the log normal displacement distribution, the cumulative proba-
bility is

2
ex,,{_ [l ()oY ] }M ) T (15)
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The estimator of the parameters v, vy, § was ca1cu1afed by the fo]]ow1ng 3
method. Ca]cu1at1ng the thre7 emp1r1ca1 moments ul,u and u =1/n 5 (o _ﬁ
the skewness is SK = i3 s Defining i=1

1/3 1 2 1/3
mef{tseefira st} T [ £s- T (16)

then the estimators of the parameters are §2=1n (1 +n2), = ﬁl-V ﬁz/n
and v=1n (u -W) - 172 §2.

EXPERIENCES CARRIED OUT, AND ESTIMATION OF THE PARAMETERS

For making a statistical comparison the test was performed for different
distributions (Weibull, Normal, Log-Normal,log-Normal displacement) of
the 30-sample set.

Commercial glass rod was used for cutting sets of 30 elements, one set
being 0.014 m high and 0.007 m in diameter, and the other set being 0.010 m
high and 0.005 m in diameter. The faces of the cylinders were polished to
get a uniform compression stress and then the cylinders were broken wusing
a Monsanto Manual Machine.

The statistical parameter for different distributions was estimated by the
method developed above ( see tables 3 and 4), and the x? test was per-
formed for 95% confidence, with V= K - 1 - P where K is the number of
intervals and P 1is the number of parameters estimated ( K =
and 6 with interval width of 39.2 MPA for sets I and II) (table 5).
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TABLE 1 - Failure Stress of Glass TABLE 2 - Failure Stress of Glass :
Cylinder Broken by Compression. Cylinder Broken by Compression. . o
Set T is 0.014 m high and 0.007 m Set II is 0010 m high and 0.005 m . 95 % |-
in diameter (volume v=0.539 cm3) in diameter (volume v=0.196 cm3) i i
(1 MPA = 9.807 - 10-° kg/cm?) Ll
o (MPA) n = 30 o (MPA) n = 30 80 % |
. 75 % |
113.3 173.2 229.2 141.3 194.7 247.1 LI
113.8 175.7 235.6 142.3 199.7 259.6 60 %% |
117.2 182.1 236.9 144.8 204.7 262.1 i
117.7 183.4 239.4 147.3 208.7 267.1 2017
137.5 184.6 245.8 152.3 209.7 287.1 ~ 0%k
140.1 188.5 247 .0 162.3 214.7 289.6 5
140.6 191.0 248.3 174.7 217.2 297.0 - 30 %}
152.8 191.5 249.6 177.2 224.7 304.5 td
163.0 198.6 257.2 179.7 229.6 339.5 i
168.1 219.0 298.0 189.7 239.6 344.5 20 %}
TABLE 3 - Statistical Parameters of Weibull Distribution for Sets I, II.
The dispersion for estimators by maximum likelihood 1is shown in brackets. :
Ber I Set II ; WL
Method m | o (MPA) | oy (MPA) Method m 3o (MPA) | oy (MPA)
maximum | 2.19 85.8 90.5 maximum | 1.33 26.6 ¢ 138.0 RAS
Tikeli- likeli-
hood (0.37) | (12.4) (7.0) hood (0.20)* [(3.2)* (4.4)* . i ol 1 1 10 30‘0 =
moment | 2.19 | 86.4 89.8 moment | 1.47 29.8 139.4 | 1o 150 200 o
least least . MPa)
square 2.19 92.7 83.3 square 1.47 34.1 138.0 i ( ( f;( 5 : S ]
* ; ; . Eig. 1, Weibull plot 1In (1n (1/1-F (o as a function of InG for glass
i S a Bl el cylinders broken by compression.
" TABLE 4 - Statistical Parameters of TéBLE 5 - Statistical Comparison with
i Normal, Log-Normal, Log-Normal Dis- xZ Test for 95% of Confidence. (For : 3 § d cracks
3 placement for Set I, 11. Weibull distribution the parameter : V; N Vp = P without common points and that there are m. ?n " i
o obtained by maximum Tikelihood  was 1 with p and q survivals in a field stress o then the probability of survival
i% Distribu | Para- U T R e o ‘ of part V; is F (V1) = P/m and that of part V is F2 (V2) = a/n. The total
e tion meter Set I Set 1II : : i
o : ibi1iti i r of possibilities of
%5 Normal s (MPA) 191.3 221.7 Actual x2 v x2 95% j possibilities of propagation are mxn and the numbe o. ?
:%ﬁ Sq (MPA) 48.9 57.1f |pistri ~ non-fracture in the total body is pxq. Hence the probability of non-frac-
b Log- o ** 7502 | vl R T it Rl 1T 1 ture is F1p (V1 + Vp) = Fy (V1) - F2 (Vp).  But it is necessary that
B 5 ~ ~r . 3
%‘ Eorm§1 - :* 1425?6; 12é§5; Weibull 2.40 | 1.64 |1 | 2 |3.84 |5.99 ?12(0) = F1(0) = Fp(0) = 1, which means that the probability of fracture
| og Nor- | ¢ ** |- : = - 0 r i i -
mal dis-| & ** 0.030 | o.1a8 |L0°N 247 |2.50 [1 | 2 |3.84 |5.99 : o & wery small bedy” =il LRG0 On, s Rl GBS NG, Get
placed y k% 9.705 8.262 : P T . FIZ(V1)= ?l(vl) and Fp(V2) = Fa(V,) from the preceding formulas, or in
g 9a‘C“‘at§d with failure stress e - : : : : a more general expression Fyp(V) = Fy(V) = Fp(V).
b kg/em Log-N [2.94 [1.73 [2 | 3 [5.99 |7.81 _ v
The preceding paragraph means that there is only ,one function with the
f property F(Vl + V) = E(Vl) . ?(Vz). But this functional equation with
THE UNICITY OF THE FRACTURE STATISTICS AND EXPERIMENTAL RESULTS the conditions F(0) = 1 and F(00) = 0 has only one analytical solution,
| Before discussing the results we would like to prove the unicity of the ‘ well-known from Euler's times:
fracture statistics. If we suppose that 1in a body with brittle fracture
we make a hypothetical subdivision in two volumes Vi U Vo = ¥,
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F(o,v) = 1—<:><P{——m£)—}

o

(17)

where F = 1 - F and 0(s) is the specific risk of fracture. Equation (17)
is the celebrated Weibull expression for the cumulative probability of

fracture in a constant stress field. The common expression of @(¢) is:
0—_ 'J-l. Y
¢(0‘)= (T—) 5 a > o
(18)
¢o) = o ;. T &5

In accordance with the preceding theorem the only possibilities for a depar-
ture from the Weibull Tlaw (17) are: 1) The body is not isotropic; 2) The
actual stress field is not the one that is used in the computations; 3) The
cracks can propagate without fracture of the body; 4) @(c) is not appropri-
ate. It is possible that some combination of slight departures of these
possibilities may give for the normal distribution a more appropriate adap-
tation to the experimental results. In order to improve the investigations
on compression, a better knowledge of the stress field is necessary, be-
cause the isotropy is insured in this case. In the case of glass the in-
fluence of the volume follows the Weibull prediction in a proportion of
30% (see Fig. 1); hence, when some crack propagates in the stress field
the glass body is broken.
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