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ABSTRACT

In viscoelastic solids the energy approach and the iodel of frac-
ture without cohesgive forces is applied to the study of fracture
processes due to crack propagation and debonding of a thin ri-
gid inclusion, The adopted model is shown to describe fracture
kinetics. The classical problems on stable and unstable cracks
in a unbounded medium are considered. It is found that a frac-
ture delay takes place in a certain range of loading. The frac-
ture problem of a viscoelastic body reinforced by a rigid inclu-
sion is treated. The kinetics of the debonding process is stu-
died; it is important for the determination of the strength of
composites,
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INTRODUCTION

Practure of solids 1s a process developing in time. The dynami-
cal process of global crack propagation in a fracturing solid
very often starts only after a time on applying loads.Refore

that moment even under constant external load slow processes of
fracture preparation are taking place. To describe them, it is
necessery first of all to take into account viscous properties

of the material, In the simplest case the material may be assumed
to be linear viscoelastic., The first attempt to apply the Grif-
fith's energy approach to the fracture of viscoelastic bodies

was undertaken by Williams (1963) and directly to the crack pro-
pagation in viscoelastic bodies by Kostrov, Nikitin, Flitman
(1969); Kostrov, Nikitin (1970). In these papers the expression
for the power absorbed by a propagating crack in a continuum with
arbitrary properties was obtained from the global energy

2579


User
Rettangolo


2580

balance. The fracture criterion for solids with arbitrary rheo-
logical properties was postulated by means of the derived equa-
tion., The application of this criterion to a linear viscoelastic
body showed that for an ideal brittle fracture model without co-
hesive forces there was no crack kinetics. On the other hand
for an unideal model of fracture (Leonov and Panasyuk, 1959)
crack kinetics does exist and the classical Griffith's problem
for this case was considered in detail (Kostrov, Nikitin and
Flitman, 1970)., Recently many papers on this subject are appea-
ring (Christensen, 1979; HMcCartney, 1977; Popelar and Atkinson,
1980). The results of the particular papers and of some other
papers presume that the simplified ideal brittle fracture model
due to its oversimplicity cannot predict fracture kinetics and
should be modified to involve more detailed description of a
fracture process. The present paper shows that the ideal brittle
fracture model describes the fracture kinetics in some degene-
rated way. The examples of crack propagation and the debonding
of a rigid inclusion are considered,

BASIC EQUATIONS

Let us apply the energy approach to fracture. For a crack to
move with a given velocity Vv a certain amount of the effective
surface energy ¥l V) must be supplied into the crack tip. Then

the energy absorbed by the propagating crack (Kostrov, Nikitin
and Flitman, 1969) must be equal to the effective surface ener-
&Y ¥V of the material:

i SULN, = ‘ (1)
EL“&?‘SHW“J‘“ 2VE,WN o

13
where Oy is the stress tensor, ui

is the contour of the cross section of the shell-body whose zur-
face lies at the distant & from the crack surface, ni is the

normal to the surface of the shell-body and the dot denotes the
derivative with respect to time t . This criterion is applicable
to arbitrary solids, In what follows this criterion will be ap-
plied to linear viscoelastic bodies, The constitutive equations

is the displacement vector,l

for such bodies relate the isotropic G;K,EK‘ and deviatoricsﬁ,
ey parts of the stress and strain tensors dq,ﬁq as follows:
t t (2)
O, =3K1E ) Sy= 2 }x{eq},‘
where slj= Gij—5q6kkl3 , gi.j= Sq—ﬁqem‘/.% 3 K and M Dbeing
the linear integral operators of the type
= t
(3)
p(fm}twof(h-gm(t-mfmdx

The subscript "O" denotes the instantaneous moduli and complian-
ces while the subs:ript "oo " denotos Uli: lcig-term moduli and
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compliances. Foxr example

t
M=M - SMmde (4)
0

BEHAVIOR OF CRACHS IN VISCOELASTIC SOLIDS

Consider the classical Griffith's problem: an unboun@ed plnpe‘
contains a cut of length 220 , located along the axis x' wiith

the crigin at the center of the crack. The axis X2 is normal to

the axis X1 . Assume that for t<0 there is no stress and strain

&
in the body, and at t=+0 the stress Géf=6 is instantaneously ap-

1

plied at infinity and then maintained constant, It is evident that
under this condition the crack can only increase its length. In
this case the correspondence principle (Graham, 1963) can be used.
Omitting the details of the solution of this well-known prob%em
let us write down the main terms of the asymptotic solution for
stress 022 and the displacemrent u2 near, say, bthe right tip of

the crack. It is these terins that make a contribution to the cii-
terion of fracture:

/2 -4/2
6, =60 (hyRel[2(z-R(tM] 3
2 1o 2t (5)
uzon{l?mIm[ztz-P(t))] 8

Here 2:=x1+tx2 , and L) is the linear integral operator of the

plane problem of the theory of elasticity; tnis operator is ex—
pressed in terms of the operators M and for plane strain

-4 -4 ;
and plane stress states, as Q=MAU-V), Q= (1+Y) , z*c_zspectl*ifl;/.
Using (5), the criterion of crack growth (1) may be written after
some transformation as follows:

2 t Y2
o RQ T, , j_SQ(t—'c)vam
2 i) Q'OV(‘E/) RVt
where @(t=lim® Relz-2ct)
£~0 I

(6)

@t,vdT| =2Y,

2 =472
Imiz-R(v] de@

It can be easily shoun that the function ¢(t;0is nonzeiro and
equal to JU only when L(})=0(T)., Thus @(tWis equal to It for the
crack al rest and equal to zero for a moving cne, As a result the
left hand side of (g) increases with time for a motionless crack
and would precserve its initial wvalue for a moving crack. Being
avare of the properties of the function.¢(ttx it is easy to under-
stand the behavior of the crack for different loads,

Ascume that the load satisfies the following inequality:

1/2
6 >(4F,/7l Q) " =G, (7
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Prom (6) it is clear that static equilibrium is not possible and
for t>ﬁ) the crack propagates dynamically and can never come to
rest since the greater the crack length the more the crack is
overdriven.

If O < oo s the crack is initially at rest. But in this case2=2°

and the left hand side of (6) increases, although the stress in-
tensity factor remains constant. It can happen that

1
6<(45*/arE°Q°°)/2§dw (8)

Then the crack will be at rest for all times. If, however,
0°°<0< o there exists the tiwe t=tr at which the equa-

tion (6) is valid and then the crack is overdriven and run-away

instability starts. The time of fracture delay satigsfies
the following equation, which results from (6)
t 2
SQ(T)d’t:Q (Qg—1) (9)
0 ke

If the stress at infinity grows monotonically with time, the
time of fracture is obtained from the equation

2
<o =6+ Qi ~womde (10)
O(t) e G0 e

r oo0
It is.interesting to congider the effects of viscosit& on the
behavior of a crack, which is stable in an elastic material. The
examplg of sucp a grack is the same as considered above but the
crack in question is loaded by a pair of concentrated forcesP ,
which act at the center of the crack in a direction normal to the
crack surface and opposite to each other starting fromt=+0, In

tpis case the asymptotic solutions in the vicinity of the crack
tip for the pertinent values have the forms

. -4y 1/2 Yz t
6,=Pt *Rel2(z- iyl 2;u;DQW (D Iml2z-2col 2},t G

Taking into account (11) and using the condition of crack growth
(6), we have t
2
TP Q.14+ 1 Qd-vveold %
- t,vdt|=2
2l [ "§ Q v b ] ¥ 1=
Let us first assume that the load is not too great so that
P<chy.p /a0y 2=p (13)
U*o o? ~ oo

Then although ?he left hand side of (12) increases with time, it
never reaches its critical value QX*zuuithe crack will be at rest

for 2ll times.

|
|
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ITow let us suppose the 1load is large ensugh so that
; 2
P>cay, 0l /)y =P (14)

Then the left hand side of (12) immediately exceeds the va%yo
2y, 2nd the crack length jumps to the value?(+0)=ﬂ11op /A

For time t>0 +the crack cannot be at rest, since when @=0(+0)
the left hand side of (12) has its limiting value and increases
due to the viscoelastic properties of the material. Further it is
natural to suggest that the crack starts to move slowly, so that
at time t =40 or at some later moment it has nonzero velocity.
According to (12) this suggestion leads to the contradictory con-
clusion that @ = constant. The situation is rather peculiar: the
crack can neither be at rest nor move, iWhat is the way out? The
only possgibility is to assume that the crack is progressing in

a juuplike manner. Being at rest 1t is overdriven to sowe extent,
then it jumps dynamically to some other length. probably overshoo
ting its equilibriwn: state, and then it coumes to rest until it

is again overdriven and so on, The awcunt of c¢verdriving or over-
shootling canmnot be found fromw the analywsis (ilolchenov snd Wikitin
1973). The equilibrium crack length sround which the crack juups
can be easily found fron (12)

t
p?
=210 +{Qvdr

| hx..[ o §, ]

(15)

Similar reasoning shows that the behavior of a crack for the lo-
ads over the range P°°<P< is analogous to the behavior des-

cribed above, except that it starts without the initial jump.

DEBONDING OF A VISCOZLASTIC LiEDIUN FROM A THIN
RIGID INCLUSION

llany composites consist of a viscoelastic matrix reinforced by
rather rigid laminates, Debonding is a typical mode of failure

in such materials., Therefore let us consider the model plane
problem of a infinitesimal thin absolutely rigid linear inclusion
with the length 220 in the unbounded viscoelastic plane. At the

t=+0

642=622=0 is created and then maingained constant, The proces-

)

tine at infinity the hocgenecus stoess state 6“=P,

ses of deformeation and debonding of the inclusion due to stress
concentration are studied., Owing to symmetry only the upper half-
plane nay be considered. The boundary conditions along X2=(3have
the forn:

U=0,IX [<%0; U =0 X<ttty 56,.=0 X 1>B () (16)

where R(t) is the length at the time t of the intact segment of
the matrix-inclusion interface., It is assumed that there is no
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friction along the debonded part. The solution of the plane pro-
blem (16) in the case of elastic behavior of the matrix can be
ea81ly_found. However the correspondence principle is not valid
for this case. To obtain the solution of the viscoelastic problei
let us act as follows.Instead of the second condition (16) con-
sider the condition

0,,=fx, 1, IXl<lt),x,=0 G

where the function ?(Xpt)is temporally regarded as known. The

elastic solution of this problem can be easily obtained and more-
over ?he correspondence principle is valid for this case. This
solution has the following form for auq(xq,o,t)/ax,l 8

QU (x,0,t) 4 -4 S e B G t
R i s | 1450 dy, (18)
Bx, =gH (@+D{p} m}l(aeﬂ)ae{g T =X }

ey ? ¥
For the initial problem the displacement Lh(xpo;t) is equal to

Zero whean1L<B(t) . I'rom here we have the following integral
equation for the determination of the unknown Ffunction f(Xqi)

«t)
S%},{idt=ﬂpl"(t),IX4|<?(1‘),X2=0,1:>0 (19)
-ty .

-1 2t 4 t
where F(t)= a0 (2 +1) {1}1/8 , )= (3-9)(1+V) {°} . Solving

. 0y ‘:
the integral equation of the Cauchy tipe and taking into account
the third condition (16) we derive

F('t)x1

b Ez‘t) -x1

It is worth noting that application of the correspondence prin-
ciple to the initial problem (16) would lead to a different re—
sult. Using (20) we can write the asymptotic expressions near

2=0(t)for 612 and au1/ a)(1 , required for the further analy-

sis of the debonding procegss:

fox b=p (20)

4 - -1 /2 -~32t
6,,x, % tr==pIml(z-Z)e+n {Fmlvz-Lcty) } -
Rl B Y2 -Y% ¢
—“FHie chz-ty ]
ou(x x bt 4 -1 -4 - ¥/ -3,
#sz—z_-pRe[%-}x(aem (@-DF R toE-0y - -
. 1/2 Yav t
-2 {F(E)L (E)(Z-P(E) }E}tl

Substituting (21) into (1) and applying the energy criterion of
Tracture to the debonding process, we have

(21)
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t Yo
1.2 2 1 (Ra-v)FmE (»
—gp BAHFDR [1 o W(t,’c)d’cl =3 (22)
2 Gl (S, R Fetr %2t i

where now ¥, 1s the debonding energy per pnit, surface, the

-4
i‘unction(p(‘t,‘t)is the same as in (6) andR{'}t:}l(& +1)&{'}t A

Suppose that the applied stiress is rather large so that
2 Y
2= (23)
p>c2y, /e R F)“=p,

vhere F°=’F(+0) . Then the right hand side of (22) execeds the 1li-
witing value from the very beginning. Therefore instantaneous
debonding occurs, so that the gizo of the intact part immedia?ely
o B L e - n o Y L SIS TR D A et
tokes the value 21—26*/31":) RoFo . The further development of the
debonding process, strictly depends on the behavior of the func-
tion F(t) . 1f F(Y) increases monotonically the integral term in
(22) vaonishes and the debonding is described by the equation

2(t)=25*/np2RoF2<t) (24)

when F decreases analysis of tlie cquation shows that € can neither
decrease nor rerain constant, Tow as in the previous case for

the gtable crack one should suggest that the debonding process
takes place in a jumplike manner. The crack moticn law can be
deduced from (22)

t
Rit-v)Fm
Pcty=2y, /mp?RFAt |14 - B g o (25)
R Fen | } R Fet ]

If the material properties are such that the integral in (25)
exists when t-o0 , the final diwmension of the intact part will

be 0,=2¥,/mp F R{FT.

The load may turn out to be

oo .

p< 2y, /ml F R{FD) > =p_ (26)

Then equation (22) is not true and the debonding process does
not occur. For lcads over the range Peo <P < Pg equation (22)
is true starting from some noment tr . After that, depending on

the benavior of the function.F(t), either sniootn or junplike de-
bonding process described above starts. The debonding delay time
is found froni the equation

t,

2 2
o ) Rt -vF(m) (2
0 - ELDAib Tl | i
Fto|p? Ff §, RoFo

deduced fron: (22).
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As an example consider the linear viscoelastic medium which is
elastically compressible and possesses standard solid properties
under shear. The function F(f) for the particular solid is ex-
pressed as

w+2)t _(Fuw+t
2 TR YY)} Q
Ftyin 2200 o B e a0 0y, o fWIRTETTE 1(29)
(W+2)(FW+2) 2 (W+2) (Wp+2) (FW+2NFwpr2)
where B=T. /T4 , w=2pm/3K and Ty is the stress relaxa-

tion time,” T is the strain refaxation time, This function de-
creases reaching the minimum value and then increases approaching

the value F(e0)=2(2wW+1)" /(W+2)(FW +2) . In spite
of the function F(t) the smooth debonding process does not take
place since the inequality F(t)<F° is valid.

Thus the simplest fracture model without cohesive forces permits
us to analyse the kinetics of fracture processes due to erack
propagation or debonding in a linear viscoelastic medium.
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