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ABSTRACT

in this paper three different micromechanical models of an unidirectionally
fiber reinforced composite are investigated (single circular and hexagonal
unit cell and hexagonal unit cell within an ensemble of seven hexagonal
unit cells). It is shown that the self-stress energy arising in the unit
colls due to uniform heating is rather independent of their geometric con-
tours and the corresponding boundary conditions. Moreover, it is shown that
the values of the energy release rate for extending interface cracks will
be remarkably overestimated by the fracture analysis of the single unit
¢ells instead of the ensemble.
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INTRODUCTION

If composite materials are subjected to thermal loads during service, ther-
mal stresses arise on account of the different thermoelastic properties of
the constituents of the compound. In superposition with stresses arising due
to mechanical loads those thermal stresses can cause fracture of such a com-—
posite structure. Thereby the ultimate strength of some structural parts
consisting of composite materials may be affected and that is why investi-
gations of the fracture and failure behavior of mechanically and/or ther-
mally loaded composite materials are important subjects in todays engineering
science. In order to determine the mechanical behavior of composite materials
in service different approaches have been used, for example mixture theories
{(Cooper, Pigott, 1977; Murakami, Maewal, Hegemier, 1979) or theories of
failure mechanisms in combination with statistical aspects (Wu, 1979;
fBeaumont, Anstice, 1980). Referring to the micromechanical concept of com-
posite materials (Rosen, Kulkami, McLaughlin, 1975) investigations often are
restricted to the analysis of small representative sections of the compound
(unit cells) (Sih and co-workers, 1973; Sendeckyj, 1974). The micromechanical
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aspect in thermal cracking of unidirectionally reinforced composites has bess
stressed recently in several papers by Buchholz, Herrmann, Strathmeier (19fisi. r,d T o 5 (1+vf)(1—2vf) Te2 rmz
Braun, Herrmann (1981) and Herrmann, Braun (1983). Uf i E-hrf{BC Ef [(;;? +(;;) =2l S
(1+v_) Loy el
SELF-STRESS ENERGY AND CRACK SURFACE ENERGY IN SINGLE UNIT CELLS Ur’¢= g h(rz-ré){BCZ = T [1+(1-2v )(—f) 1} (11)
m m m r
First we consider an uncracked circular unit cell of thickness h with a cir= and 5 i
cular fiber of radius rg embedded in a concentric matrix of radius ry (Fig. ih c:=-w3{(1+v yo AT - (1+Vv_)o AT } (12)
Due to the differing thermoelastic material properties of fiber and matrix B T S
(Table 1) a non-uniform stress field will arise in this two-phase compound - r r r r
if it is subjected to a uniform temperature rise AT in service. The analysis D= 2 {(1+v) (1-2V_)E [—E""JE]—(1+V VE_[2+(1-2v )—E]}(13)
of the stress and displacement fields of this uncracked unit cell results EfEm £ £ m T e m 7 £ re m'r
under the assumption of plane strain conditions in the following boundary- v i
value problem of the stationary thermoelasticity (Herrmann, 1970). Referrimo eoybuebelofitise ] Cuc teetlcniag elarion e
Ve ) +TE-%V2T(r>}. o, E=f- Ter (13 r,¢ ar, ¢ T
i m matrix Wi (¢1=O) =ty (¢1=2W) =h [ G(¢)rfd¢ (14)
¢=0

where F; (r) denotes the AIRY stress functions for the fiber and matrix, re-

spectively. Further, at the boundary of the matrix the boundary conditions Equation (14) states that the energy 6%+ (¢ =2m) which the circular unit

cell releases to an extending interface crack until complete separation of
fiber and matrix (¢, crack angle, G (¢) energy release rate) is equal just
to the energy term UL:9 belonging to the uncracked unit cell. This is evi-
dent, as for a crack angle ¢1=2W fiber and matrix can expand unrestrictedly
as separate homogeneous parts in the r,¢-plane, which means they are free
of radial and transversal stresses O,, and Og¢ and results in

Orr(rm)==0r¢(rm)==0 {23

have to be fulfilled. Moreover the following continuity conditions

[cxrr(r)]r=rf=[cr¢(r)]r=rf=o (1

=0 (4}

[ur(r) ]r=rf = [ud)(r) ]r=rf =

v Ur,¢(¢1=2W):=o . (15)
have to be valid at the fiber-matrix interface, with the definition of the

e Similar considerations lead to upper bounds for the self-stress energy

withdrawable by any straight, circular or curved thermal crack within a

. single two-phase circular unit cell (Buchholz, 1983). Equation (14) also
holds for single two-phase unit cells with any geometric contours, for
example for the hexagonal unit cell (h-uc) of Fig. 1 too. But for this geo-
metry to the authors knowledge no analytical expression is known for the
self-stress energy U or ur:% due to a uniform temperature rise AT within the
compound.

[m(r)]r=rf=wf(rf) -wp (re) W)

A closed analytical solution of this boundary-value problem was given by
Herrmann (1970) delivering the complete stress—- and displacement fields
within this two-phase compound as well as the self-stress energy

U=U +U (6}
On the other hand for any single unit cell and any corresponding material
section within a real composite structure the arising self-stress energy,
due to a given temperature distribution, can be computed with very good
accuracy (Jacker, 1983) by the aid of the finite element method using the

relation

arising in a circular disc, with finite thickness h-of the circular unit cell
due to uniform heating. For plane strain conditions it has been shown by
Buchholz (1982) that the self-stress energy U of such a disc can be separated
into two independent terms

el T Ky (16)

z xr,
B s (7 5 E.

where r_ is the vector of the effective thermal displacements, gg is the
transposed vector and K is the stiffness matrix of the corresponding finite
element structure. Using the same finite element analysis, one can determine
by various numerical procedures, the energy release rate G(¢$) for any quasi-
static extending crack which is of great interest from the fracture mechani-
cal point of view.

The energy term U% is due to the suppressed displacements in the axial
z-direction of the circular compound cylinder and is given by
z z z
u” =0% +
£ Um (8
r 5 = L
The energy term U ¢ is due to the inhomogeneity of the compound within the

r,$-plane perpendicular to the z-axis of the unit cell and is given in

(Buchholz, 1983) by
SINGLE CIRCULAR AND HEXAGONAL UNIT CELLS (c-uc and h-uc)

Ur'¢=U;_'¢+Ur'¢ (9)
i The following investigations refer to the three different micromechanical
models of a unidirectionally fiber reinforced composite material as shown

in Fig. 1. The main differences between these models are the different geo-
metries (circular- and hexagonal unit cells, c-uc and h-uc) and the different

with the definitions
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boundary conditions acting on their contours. Thereby the single c-uc and
h-uc have vanishing normal stresses and no displacement restrictions on the
free matrix surfaces. The hexagonal unit cell within the compound (h-uc-c)
has normal stresses acting on the contour lines between the inner and outer
unit cells and compatibility conditions which have to be fulfilled there in
addition. All three unit cells have the same fiber volume fraction of
V§/V=30% which corresponds to a radius fraction of rg/ry=5.47/10 for the
c-uc. Furthermore, the same material combination of SiC-fiber and Al-matrix

and the same temperature rises of AT1=100°C are considered (T{=To+AT;, i=f,m;

To - temperature of the unstressed init

ial state; the thermoelastic material
barameters are given in Table 1).

TABLE 1 Thermoelastic Material Parameters of the Fiber-Matrix Compound
Notation Fiber Matrix
Sic AL
Young's modulus E[Nmm~2] 449, 300. 69,650.
Poisson's ratio v[1] 0.266 0.339
Lin. coeff. of thermal expansion alx™1] 4.5-1076 2.4-10"°5

single hexagonal
unit cell (h-ucl
single circular
mpound unit cell (c-uc)
of same area

hexagonal unit cell

ace mafrix

) Fig. 2. Displacement field of a
single circular unit cell
(-—- undeformed, ——deformed)

Fig. 1. Cross sections of three
different unit cells

Figure 2 shows the finite element mesh of the c-uc and the numerically cal-
culated” displacement field of the uncracked two-phase compound. It is evi-—
dent that the displacement field of the deformed structure is geometrically
similar to the undeformed one because of the axial symmetry of the c-uc.

In Fig. 3 radial and transversal stresses Oryi and Op¢pir i=f,m of the c-uc
are plotted versus a radial line of O degree (standing for all radial direc—
tions). Within the fiber both Stresses turn out to be constant (tension) and
corresponding to the analytical continuity and boundary conditions (Egs. (2)
and (3)) Oy, decreases monotonically to zero on the free surface (r=xy) .

In contrast 0¢¢ Jjumps at the interface from tension to compression and does
not vanish for r=rp. By comparing these graphs with the given analytical

1performed at the University of Paderborn Computer Center on a PRIME 750
using 6-node linear strain elements TRIMP 6 of the ASKA finite element
computer programme.

reference solutions of the c-uc (Herrmann,
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1970) it can be concluded that

i ici it dis
the used finite element discretisation is fully suff1c1ent,halth;ug:er Lo
not very fine with respect to the bigger h-uc-c model and the comp

¢ilities.

i - i i nd a
In Fig. 4 the corresponding displacement field of the h-uc lsdg;Ziﬁciure o
detailed analysis shows that the outer contour of the deioimihe s
i i ed. It seems evident tha
o more straight but slightly curve L : ; el
Zion stresses acting nearly uniformly on the flber—mztiix ;zizgiizi s
i the narrower sides o e
lead to greater deformations on : e
i i i dges. Figure 5 shows the
than in the thicker and stiffer e : i e
= ference solutions of the c-uc.
ess curves of the h-uc and the re 2 ;
:tiesses on the O degree line (to one of the edges) arg sllghtlydhlgtirthe
near to the fiber-matrix interface and within the matrix comiirEOlg; i
i= -uc. The opposite resu
ses O,..: and Oggpir i=f,m of the c-uc : :
?;Zeio degigés line¢$é the side contour of the matrix. The.malé ilfii:ezgge
Ls given by the vanishing stress Opdm along thg o degriiel;2§gi2 g_ue b
i i that the edges o
the hexagonal matrix. This means " k
ziee of strgsses and strains which will decrease the amount of self-stres

energy arising in this model.
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Fig. 4. Displacement field of a
hexagonal unit cell
(-—- undeformed, — deformed)

Fig. 3. Stresses within the single
circular unit cell

In Table 2 the calculated self-stress energies of the t?ree models irg g;zif
(Jacker, 1983). Thereby, with 1.6% difference the numerically compz e.th e
4 5 i i nt wi

G he c-uc is in very good agreeme
ess energy UY’? (Eq. (16)) of t
zEZlyticallg calculated value UY'?®, Egs. (9)-(13). As sugge§ted ibogilgﬁialue
value UYr9 for the h-uc is slightly lower (1.5%) compared with the
of the c-uc.

TABLE 2 Self-Stress Energy and Crack Surface Energy of Different Unit Cells

h-uc-c
U[ Nmm] c-uc h-uc
ur.9 21.125
1.6% gty
gred 20.778 e 20.467 20.757
2B 1. 7% Sl 33.1% T,
or.¢ 19.475 : 19.142 :

34.2 %
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Now we put our attention to the thermally loaded curved interface cracks and
their energy release rates in dependence on crack length, which is of great
importance concerning the analysis of thermal fracture behavior of composite
materials. Looking at Fig. 6 it can be seen that the energy release rates of
the interface cracks extending quasistatically in the fiber-matrix interface
of the c-uc and the h-uc nearly give the same graphs with increasing crack
angle ¢ which means that both models lead to the same thermal fracture be-
havior. With respect to the corresponding values of OY+9 ang the fact that
both cracks withdraw the whole self-stress energy of the single unit cells
this result is evident. Further Fig. 6 shows another interesting result
concerning the thermal fracture behavior. It can be seen that a starting
thermal interface crack opens up under predominating mode I conditions until
crack angles up to nearly 30 degrees but afterwards the Grr-values increase

to a distinct higher value at ¢ =~ 90 degrees, whereas Gr(¢) goes to zero for
crack angles ¢ > 90 degrees.

= 120 =
£ ] ‘ T | fiber: sic Jc-uc
£
= g =z matrix: Al 7 h-uc
o 1 . o
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Fig. 5. Stresses within the single Fig. 6. Energy release rates of three

hexagonal unit cell different cracked unit cells
Finally, turning towards Table 2 again, it is to mention that the difference
of 7.8 % between the values of U¥Y,9 ang Gr ¢ for the c-uc is caused by the
coarse finite element mesh in combination with the numerical procedure of
the modified crack closure integral (Rybicki, Kanninen, 1977) by which the
strain energy release rates G (¢) have been calculated.

HEXAGONAL UNIT CELL WITHIN THE COMPOUND (h-uc-c)

In Fig. 7 a hexagonal unit cell within a compound of seven cells can be seen
before and after the uniform temperature rise of AT=100°C. The contour lines
between the inner and outer unit cells of the deformed h-uc-c structure show
no deviations from straight lines as it has been noticed in Fig. 4 for the
single h-uc. This is a result of the compatible displacement fields of the
inner and outer unit cells and has further the effect that neither the side
lines nor the edges of the h-uc-c are free from stresses and strains, re-
spectively. Especially, this can be noticed by the graphs belonging to the
Orrm Stresses and plotted against the radial lines of O and 30 degrees in
Fig. 8 and 9, respectively. Consequently, the arising self-stress energy gr. ¢
in the h-uc-c is higher than in the single h-uc, where the small amount of
just 1.4 3 was a surprising result. Furthermore, it can be stated that the
analytical expression for ur. ¢ of the c-uc delivers a very good approxima-
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7
fiber matrix
interface

Fig. 7. Displacement field of a hexagonal unit cell within
the compound (h-uc-c) (---undeformed, ——deformed)

tion of the self-stress energy arising in the h-uc-c and consequently in a
real unidirectionally fiber reinforced composite with Vf/V=3O o

But looking at Fig. 6 it is striking that the curves b?lor.lging to thi GI,of
G and G (¢)-values of the h-uc-c show remarkal?le deviations frpmht.: ES(-E

tl:'[é c-uc and h-uc discussed previously. The maximum value Ol.f G(¢)whic ;sal _
due to Gpax £ Go of utmost interest for stable crack growth in fractu{fe 12 y
sis is about 36 % lower than the maximum values calcu_'!_ated from the sz_ng

c-uc and h-uc. The reason for this result obviously is *.che fac.:t that t‘e
matrix of the h-uc-c is still connected to the surz'coundlng unit (Fellsfln
spite of the complete separation of fiber and matrix due to the interface i
crack. Therefore, a valuable part of the originally stored self-stress Zm.er
gy within the h-uc-c still remains in the matrix (x34 %, see Table 2) and is
not releasable for the interface crack.
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Moreover, Fig. 6 shows, in contrast to the results of the single unit cells,
that the maximum values of G (¢) and Gr1($) turn out to be of about the same
magnitude for the h-uc-c.

CONCLUDING REMARKS

In order to obtain microstructural informations about the thermal fracture
behavior of unidirectionally fiber reinforced composites different shaped
unit cells as well as an ensemble of such unit cells under thermal loading
were investigated. Thereby the corresponding mixed boundary-value problems
of the plane stationary thermoelasticity have been solved by applying the
finite element method. Further it could be shown that the self-stress energy
stored.in the considered three types of unit cells (c-uc, h-uc, h-uc-c) is
rather independent of the geometric contour of the unit cells as well as of
the corresponding boundary conditions, respectively. Finally, it was pointed
out that the fracture analysis of single unit cells with one dominating
interface crack leads to remarkably too conservative results concerning the
maximum values of the ‘energy release rates.
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