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ABSTRACT

An attempt is made to simulate the temperature field comnnected
with a propagating crack in a visco-plastic material. The
authors apply modern continuum thermodynamics of strain-rate
sensitive work-hardening materials to describe heat dissipa-
tion, convection, and conduction phenomena connected with the
temperature development in the crack region. The finite element
technique has been used to solve the coupled thermomechanical
system of field equations which are highly nonlinear.

The results are in a better agreement with recent experiments
than those obtained by the classical uncoupled crack propaga-
tion models. Some aspects of micromechanics of defects near
cracks following from this approach will be discussed.
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INTRODUCTION

Investigations of temperature fields within the near-crack tip

region are important in two main areas of modern fracture

mechanics and fracture physics:

I. Phenomenological fracture mechanics concerned with fast
crack propagation and high temperature crack phenomena.

II, Micromechanics of fracture and crack formation, defect
interaction and defect kinetics related to crack tip and
crack flank mechanisms,.

The crack tip zone structure has been shown to be important
for both macroscopic and microscopic concepts of crack propa-—
gation, particularly in ductile materials. The fracture pheno-
menon indeed cannot be fully explained on a purely macroscopic
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level within the framework of isothermal mechanics as 1t was
the aim of conventional approach to fracture mechanics. Modern
fracture mechanics has to take into account to a certain ex—
tent both phenomenological and structural aspects. Thus, more
realistic phenomenological concepts of crack and fracture are
based on a more detailed description of the mechanical’stress
fields, deformation and deformation velocity fields and the re-~
lated field quantities on the one hand and micromechanics of
defects (including defect interaction mechanisms and defect
kinetics) in the crack tip and crack flank regions on the other
( Michel,1982,1983) .The temperature field itself is an "inter-—
relating field quantity" which appears both on the macroscopic
and on the microscopic level, but in different wayse. The above-
mentioned fundamental areas have to be dealt with in other
branches of current solid mechanics also.

Fracture Mechanics and Temperature Fields

One of the main problems is the exact knowledge of temperature
fields which enter nearly all microscopic concepts of crack
and fracture. The micromechanical approach to fracture theory
is above all directed towards the investigation of crack ini-
tiation mechanisms and the understanding of crack tip surroun-
dings (process region etc.), where the known approximate con-—
tinuum models have to be supported by additional concepts ba-
sed on solid state physics (microphysics up to lattice theory
based on quantum effects) and physical chemistry on a more mic-
roscopic scale. Because of the complexity of the elementary
processes related to crack and fracture problems, fracture me-
chanics must also take into consideration field interactions.
For example, in recent work, the stress field interaction with
an electromagnetic field near a crack tip has been investiga-
ted ( Farat, 1979). Most of the problems concerning such kinds
of field interactions with cracks are, at present, unsolved.,
The most important field interaction which has to be taken in-
to account in nearly all cases of practical importance in fast
crack propagation and high temperature crack mecharnics is that
between the crack tip mechanical field gquantities and the tem-
perature field. The investigation of energy dissipation mecha-
nisms neer cracks is very important for understanding of macro-
scopic and microscopic fracture phenomena. The temperature-—
dependence of nearly all quantities of mechanical behaviour of
solids (such as strength, yield stress, fracture toughness,
Young'®s modulus etc.) is obvious and follows already from fun-
damental laws of statistical physics. In the phenomenclogical
approach to fracture theory the generally accepted way to take
the temperature into account is, as an effect on properties
(temperature-dependent Young's modulus, work-hardening parame-—
ter etc.). However, temperature is also a field gquantity which
varies with position and is dependent on the mechanical field
quantities. Thus, the fracture -mechanics models applying tem-—
perature-dependent material parameters(which are invariant with
position), have to be characterized as more or less good ap-—
proximations. Much more important is the fact that the quanti-
ty of energy dissipation strongly varies with position. For
fast crack propagation a heat dissipation zone structure of the
near-crack tip region superposes on the mechanically induced
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structure of the "process zone". This can be taken into ac-—
count only in a coupled-field mechanical-thermal interaction
in both directions. We have to think of the significant fact
that dissipation energy is immediately coupled to ?he_mecha-
nical field tensors (in visco-plastic materials thlS‘lS
achieved by the strain-rate tensor or in particular its second
invariant). Little information is available for fracture phy-
sics studies of elementary processes occuring in the near re-
gion of the crack tip temperature field, but it must be realized
that the overwhelming majority of defect interaction processes
(and hence defect kinetics) agre strongly dependent on tempera-—
ture. This becomes obvious, if we examine the activation of a
given active defect mechanism near the crack tip (point defect
mechanism, dislocation mechanism, microvoid mechanism e?c.).
The activation factor exp (U/kT) plays a dominantrole in every
case, as would be expected from the statistical physics of de-~
fects (U,- activation energy , k — Boltzmann's constant, T -
equilibrium temperature within the defect region where the me-
chanism is observed), - !

In recent papers analytic formulae have been published for
some kinds of elastic interaction energy between different
defects near cracks, surfaces, interfaces etc. We write down
two examples (Michel,1982,1980). The interaction energy beween
two dilatation centres near an elastic boundary surface is

B e e ey iy
A is a parameter which depends on the elastic moduli and on the
kinds of the defects, R, and R, are the radii of the defects,

a is the projection of %he dis%ance between the defects on

the crack flank. :

The near-crack flank interaction beween an edge dislocation
and a point defect or an inclusion can be written in the fol-
lowing form (Michel, 1982):

ol ol TS 8 S R DT SR ¢2)
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where E, is the known expression for the energy of "COTTRELL"-
interactgon between the two defects in the unbounded medium and
f(Ol) is a "shape function" expressing the position of the de-—
fects with respect to the crack. e, is a geometric parameter
which depends on the BURGERS yector of the dislocation and the
mean distance beween defects and crack flank.

These two examples are mentioned here because it becomes obvi-
ous that there is no need to compute the energy terms U, of
mechanical interaction which are responsible for activation,

if the temperature field within the defected region remains
unknown. On the micromechanical level the combined factor

( U,/kT ) occurs which is one of the dominant parameters for
nea%—crack defect mechanisms. From the two examples above we
can draw the conclusion that the two-directional exchange of
mechanical and thermal energy is both related to phenomenolo-
gical continuum mechanics and continuum-thermodynamics and to
micromechanics of structural defects as well. In the following
section of this paper we are going to deal with a continuum
approach to the temperature problem in crack fracture mechanics
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applying a visco-plastic strain-rate sensitive and strain-
hardening material. The second step should include the discus—
sion of consequences of the results on returning to the micro-
scopic level again ,but will not be dealt with in this papere.
The two-directional exchange between mechanical and thermal
energies in the dissipation zone near the crack tip is the ba-
sic assumption of our model presented below (Michel, Griinde-—
mann, 1983). It may be one reason for the fact that the great
variety of mechanical-thermal properties of materials during
fracture processes is not understandable by present-day fracture
mechanics which neglects the coupling effects. The authors ex-—
press their opinion that energy dissipation mechanisms are im-—
portant in this field and may not only contribute to an im—
proved explanation of the temperature rise in the crack tip
region of fast running cracks but should also be important for
low-speed crack phenomena in several cases. Heat dissipation
might be important also for describing some special phenomena
in creep fracture mechanics as the thermo-visco-plastic epproach
cen also be applied to some questions concerning defect ki-
netics (e.g. cavity growth, microvoid coalescence effects etc.).
The latter are responsible for energy terms contributing to

the process zone energy and therefore have also to be included
in the exact evaluation of the energy balance equation valid
for the fracture prccess and 2ll the resulting generalized con-
servation integral concepts based on the energy—release rate.
Though we do not go further into detail here it is useful to
mention that the derivation of additiocnal contributions to the
well known integral fpracture quantities (path-independent in_
tegrals) such as J , § y C , C® L , M etc. taking in addition
into consideration the temperasture field and the coupling to
the strain rate is possible.

Coupling between Strain-Rate and Temperature Fieldé in Visco-
rPlastic Materials

fie start with the constitutive equations for isotropic work-—
hardening and strain-rate sensitive plastic material which
have the form (see e.g. Grindemann, 1983):

Si5=2m W) £y a5
with the seqond strain-rate invariant A
o o ® ,I/2
A—-(ff;jf;j) ’ @HaEiny

where the elastic part of the deformation tensor, for simpli-
city, is assumed to be smzll and therefore is neglected here.

(A) is a generalized scalar—valued viscosity function. In
the case of an incompressible non-Newton fluigd (this model is
widely used for high-speed deformation of visco-plastic solids
in engineee¢ring) the well-known formula

15 = Gy +op (5

holds, where p is the mean (hydrostatic)pressure,Qﬁj are the
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Cartesian components of the total stress tensor, and Si. are
the deviatorig stresses given by (3), This model of J
constitutive assumptions implies tha? crack tip moves tﬁrough"
the medium or — in the rheological picture - the medium"flows
around the crack tip. We do not deal with the general kind of
constitutive behaviour (3) but assume an exponential }aw oﬁ
the following type which includes many cases of practical im-
portance (steels etc.) and which ha§ been widely used in me-
tal cutting and metal forming theories:

A

pow a3 .Gyl e
B O

I 6) @y is the yield stress in the uniaxial tension teste

Hal ;n n are magerial parameters. They can be dependent on

temperature. For pure plasticity we have x'-q oo and (6) then

leads to the known formula

pos) v, T2 . ¢ 79
¥ A LRI Y .

For simplicity,swe neglect elastic effects W1?h1n_thls paper.
This is possible for the type of materials which is consi-
dered (special steels),if the strain rate is high enough.

ow regard the crack propagation phenomenon as a material
ﬂiagsportgproblem around the crack. This idea enables us to
apply the thermo-rheological model of crack propagation (adia-
batic conditions). For our thermomechanical model the tempera-
ture development depends decisively on the dissipation energy
Q occuring in the plastic process. This quantity is given by
the expression (Michel, Grindemann, Sommer, 1984):

Q:Sijéij ; Gi8u)

5 ; i x ! 4 i dad
Note that in (8) Einstein's summation convention is use

Fgom the first law of thermodymamics the heat equation follows

which in our case of steady state is written in the form

-div(kgradT)+s>c;r'gradT=Q. (@)

k —= thermal conductivity for isotropic material

¢ = specific heat at constant external pressure (which is dif-
ferent from p in equation (5))

$ - mass density. e
All the quantities above may be depend%p? on temperatune within
this model. The velocity distribution V is determined by the
momentum balance equation. In the stationary case we have
-9
dive + K =o , (10 )

where & is the stress_tensor in dyadic form (the components
are given in (5)) and K are the volume forces.

Taking into account for the strain-rates

il e (11 )
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we finally arrive at the following form of the momentum equa-—
tion

diV(}l(A) (grad*‘r’+grad?}m))-gradp+i’=o. ( 12 )

In addition we also have to fulfil the continuity equation
which in our model reduces to the well-known incompressibility
condition

diV?: o o ¢ 13)

The equations (9), (12) and (13) are said to be "fully coupled"
and a simultanious solution is asked for which in addition
must satisfy the boundary conditions for the moving crack. We
do not deal with the analysis in detail here (see also Griinde—
mann 1983; Sommer,1983). Applying numerical discretization by
means of Finite Element Method (9) and (12) can be written as

a matrix equation :

A (V’T) (o]
o B (v,T)

A

s ¢ 14 )

W
H

t Jtel

where y and I represent a set of parameters defining velo-—
city and temperature, respectively, on a suitable finite ele—
ment grid. The matrixB jin contrary to the usual FEM discreti-
zation is non-symmetric. A is symmetric. The generalized heat
equation (9) is highly convective. It is convenient to make
use of the so-called "upwinding" technique to avoid instabi-
lities (Sommer, 1983). The system of partial differential
equations and whence the discretized equations (14) are highly
non-linear. This means that as a rule the solution could be
‘obtained by iterative procedures only. The mean pressure p
could be eliminated as a dependent variable. This approach is
called "penalty function" method which we have applied here as
we are interested above all in the temperature field as the de—
cisive field quantity.

The model has been applied to two different cases of practical
importance:

1) The crack tip geometry is prescribed by means of characte-
ristic parameters

2) The crack tip geometry also is computed by means of a"free
boundary value problem",

The authors dealt with both cases. The second problem is much
more difficult (Sommer, 1983).

Fige1 and Fige. 2 show some typical results obtained for crack
propagation (crack tip velocity v = 0.1 m/s, steel Ck 45).
The examples show the case where the crack tip geometry is
prescribed (non-vanishing crack-tip radius).For sharp crack
tips the temperature rise effect is greater than for rounded
crack Gipse.
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Fige 1. Isoline -representation of effective strain
rate around a crack tip, crack tip velocity

Y= o.im/s

9
19
28
e
47
56

66 ['K]

k x
Fige. 2. Temperature-isoline-representation around

a moving crack
v = 0.1 m/s
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