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CONTINUOUS DAMAGE MECHANICS MODEL
OF FRACTURE IN LAMINATED COMPOSITES
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ABSTRACT

A modified version of the Kachanov damage accumulation law is employed to
study the damage kinetics in laminated composite materials, such as epoxy/
graphite laminates embrittled by low (76K) temperatures.
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INTRODUCTION

Changes in the inner structure of multiphase materials leading to the
failure of a structural component can be divided into two basic stages.
The first one includes formation and growth of microscopic damages such as
vacancies, voids, micropores, and the like, randomly distributed through-
out the body. This stage can be called a "latent" phase of fracture proc-
ess. It is terminated at the instant when the micro-defects localize in a
small volume of material leading to a formation of a dominant macroscopic
crack. Propagation of this "visible crack" constitutes the second stage
of fracture process. When the length of such a crack or its rate reaches
the critical value, the final rupture of a component takes place.

MATHEMATICAL MODELING OF DAMAGE ACCUMULATION
Now, we shall focus attention on the failure process which begins with the

appearance of the characteristic damage state and ends with the total loss
of structural integrity of the composite laminate.
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Although the primary component of the damage in this stage is the fiber
breaks, which are generated ahead of the dominant crack shown in Fig. 7la,
it is realized that other forms of damage, such as matrix cracking, void
growth and coalescence, are also present. The theory which allows one to
model the process of damage accumulation and the associated extension of
the dominant crack which interacts with the damage field stems from the
continuous damage mechanics (CDM). This model accounts for stress redis-
tribution due to advancement of the crack and allows one to describe the
effect of such stress redistribution on the rate of damage growth. The
basic assumption underlying the mathematical modeling involved in the pre-
sent work is the modified version of Kachanov's law (1966). In its orig-
inal form the Kachanov law relates the rate of damage growth dw/dt to
the net section stress, s, i.e.,

dw/dt = Ccs¥ M

Here C and v are material constants, while the net section stress
5 {= P/Aeff) and the nominal stress o (= P/Ao) are related as follows

A T i o e e (2)

The scalar quantity , which has been identified as the internal damage
parameter, represents the deterioration of the cross-section which
transmits the tensile load due to the formation and accumulation of micro-
defects. If the area actually transmitting the load is called the Yeffec-
tive area," Aeff’ then on represents the fraction of the initial

area Ao which no longer transmits any load. An example of a law of dam-

age accumulation is the Kachanov equation, which in its classic form may
be obtained by combining equations (1) and (2) as follows:

do _ g v
at = €G30 : (3)

This equation defines the time-dependent quantity o as a function of the
uniform stress o. A modified version of the basic equation (3) reads

w dz

at ~ Clis) 4

o

in which the stress oy No longer is the uniform tensile stress but

equals the actual stress occurring at the front of an initial stress cen-
centrator such as a sharp crack. Although equation (4) may be readily
integrated

1

t
w(r,t) =1 - [1-C(v+1) OI q; (r(<), ] dT]“+] (5)

this form is not of much help unless one provides further details concern-
ing the stress oy 9enerated (a) ahead of the stationary crack for

the latent phase of the fracture process, and (b) ahead of a moving crack
for the second phase of the fracture process.

If time is eliminated consistently whenever/jt appears in the problem,
equation (5) may be expressed in the following form:
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v
da -C ag (a) @)
dt c @ 3 by da' dQ1(a, ao)
33 (e, 3 da
a
o

Here the symbol a' denotes the rate of crack grqwth eva1uatig ;n%|t?§

instant t', or, equivalently, for the i;iﬁr gen%:ha;Léar:xz “ﬂ:etheadenomi—
d notati a = a rm

4 shorthand notation th a = a(a'). o e g deneneT

nator of equation (6) involve not only stress I but also q

ent do./dr (or do_./da since "a" is used as a yardstick to
: i ] , i tit et

i k tip). The only quantity y
measure the current distance from thp crac e
unexplained 1is Q] (a, ao). 91 is the amount o g

at the poln’l P see Fl(] b and 2 at the end of the latent pha'Se of
)
( S
racture (t t")‘ Dur ng this phase, the crack emains Stat'ona'y: and

i Sried
fts length equals a,: In general, the damage parameter @ is define
by the following equation:

+1
w 1_ -l_ AY 7
Q=] (1-0")’de' =——£——)—u‘:1 (N
o

it 1s seen that the lower 1limit for @ 1is zero (corresponding to the

undamaged state, o = 0), while the upper 1limit of @ (corresponding to

N o
the "saturation" level of damage, w = 1), is the critical value g

(1 + v)_]. The damage parameter @ is directly related to stress
ayp, that is
t
8
r.t) = €, [ a2 ir(z)ix] dz (8)
o
In fact, equation (8) may be used to formulate the fracture criterion

based on the damage accumulation concept.] T?e crgtirioze?agtb:h:eg?ilgﬁﬁg
terial elemen oca

as follows: for a collapse of a ma 1 o

r from a dominant crack tip, (which generates the stress field °z(r' »

it is necessary that the time integral of wv-th power of the stress
at that point,cz,attains the critical value, Qc.

To ev51uate the amohnt of damage generated at any instan;I durlzg SEES
latent phase of the fracture process (0 < t < t]),' say 1

i i Q. vs. the reduced
stitute °z(a' ao) for ag in equation (8). Plots of. 1d o g
distance from the crack tip, ro/p* = Eo’ obtaine :
of the normalized time t/t1 are shown in Fig. 3a. These plots were
constructed assuming certain input data for Y(ro)/Y*, i.e., the stress

i i i ly-crack shown 1in Fig. 1la. An
distribution ahead of the do¢1nant p ) .
analytical form of the function Y(ro) was obtained by a Hermit

interpolation performed on the numerical solution by the finite element
method, Kriz (1982).
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The distinct differences between the distributions of damage shown in Fig.
3b suggest that the exponent v has a very strong effect on the nature of
the damage accumulation process. For v > 1 there is only a minimal
amount of damage generated during the latent stage of fracture at a site
some distance away from the crack front. However, the opposite is true
for v < 1, e.g., v = 0.1 When v << 1, the damage built up at the
control point P during the time interval (0, t]) nearly reaches the cri-

tical level. Upon completion of the latent phase relatively little life
is left for the material element located at P. Therefore, the propagation

phase rapidly 1leads to the final rupture or ‘“sudden death" of the
component. :

To conclude this section let us evaluate the "residual damage", @

which is the amount of damage generated at a given point while the crack
front is advancing toward that point. Evaluation of @ involves nu-
merical integration of the expression

Q a Ki;(a') v 'y v '
e I Y(r!) da ey -
92 o (tT) aj [KI(ao)] [Y(P*)] ] ’ Fo= pyta-a (9)
o a(a')

in which a(a') is found from the equation of a moving crack, i.e., equa-
tion (6). Examples of the damage distributions resulting from numerical
evaluation of the expression (9) are shown in Fig. 4. Again, to 1illus-
trate the distinct differences in possible scenarios of the damage accumu-
lation process, these two values for the Kachanov exponent were used: -
= 0.1 and v = 2. Since for v < 1 most of the microstructural damage
is generated during the latent stage of fracture, it becomes obvious why
in this case the second phase of failure process, i.e., crack propagation,
constitutes only a minor part of the total 1ife of the component. The
opposite is true for v > 1. This effect is demonstrated by the three
curves shown in Fig. 5a which represent the final outcome of the
mathematical model, namely the integral curves resulting from a nume-
rical solution of the integro-differential equation (6). Note that both
the crack length and time, as plotted in Fig. 5a, are nondimensional.

Figure 5b shows the three curves representing the three hypothetical
failure processes obtained for v = 2, the characteristic structural
length p,/b = .02 and the initial crack length X, = ao/p* = 10,

for the three different states of stress generated ahead of the dominant
ply crack. The trend in the failure development process, shown in Fig.
5b, is the same as that inferred from the stress analysis by the finite
element method performed by Kriz (1982) for the cracked epoxy/graphite
laminates exposed to low temperature (76K).

DISCUSSION OF RESULTS AND CONCLUSIONS

Although the stacking sequence of the laminate used in Kriz's experiment
[0, 90°, + 45°,6 - 45°]S, differs from the stacking sequence [90°, 0"]S

for which our calculations have been performed, the basic conclusions of
this work may be extended to other geometries; and, in particular, they
remain valid for the laminates with the stacking sequences favoring forma-
tion of the transverse matrix cracks (1978, 1982a) during the early stages
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af damage accumulation process. Figure 6 shows an edge Vi?V oZég;ﬁei;Feg
ﬁhﬁch would exactly correspond to the geometrical con ;gur SRy
double edge-notch tensile specimen chosen for the numerical examp

sented in the preceding sections.

= 0.1 from the
ftqurer 7 shows an example of the 92 evaluated at v

exact equation (14) and from the approx1mate.equat1on #11Aé Jn; cﬁ::1:n
ston is that the approximate form (181 provides a vatpi\ gk TRk 20
evaluation of the damage generated dur]ng the propagatio eE - Aot i
the Kachanov exponent v is small relative to one.1 :og:o; 'obtained e
¢al tests have shown that when v << 1, the valu 5

igi 11 as compared to the
any pair of numbers X and x becomes negligibly sma p

value of 91 evaluated at t = t1, namely

10
@ =9, [Y(r))/¥(e)]1 (10)

1

This equation along with the expression defining the incubation time, t4

v/2
R Thtisic Effftl___} an
[OI [} (t)dt]v << i1l i C K?(BO)Y:

provides the basis for quantifyjng thz ﬁx? ggiiﬁi %iit?ga{algagi g;gcﬁzz
inated composites. The f1rst.an e cr es ¢ a%/

;: li:imated using these relationsh1ps.‘ When the "time zeE%; 1sa;ge3§;n

f{ed with the establishment of the critical damage sFate é ),me ok

it may be shown that the Kachanov exponent u‘does 1nde§ a%su

close to zero, then we obtain the following estimates (o << o¢):

v
i (Qc/czc)(Zp*/ao)V/z/F“(ao/b)Y*
(12)
2, = e [r Ve ] b, Siex tiai-a,

i i inforcing
i the ultimate tensile strength of the rein
(in which . denotes

fiber). Since @, << @, we also have

1 = 1 ( )
t
tz << t, and T 13

i i i tained as
i f the composite laminate and is ob )
The symbol T denoteg the 11fg o e g s
the sum of the critical times, T = t1 + t2‘ For a fger; B ety
A b i< fledl, s

history and when the condition o << o, s not satisfie Gl
critical time t1 has to be evaluated numerically as a root of equation
(1) However, when the applied stress is maintained constant upon crea-

isti = = t., and
tion of the characteristic damage state, say o 9 cons

i trating a tensile
formulae for a pair of edge Fracks pene ! ens
:zzziégf Jffﬂ Fig. 6) are employed, an estimate for the first critical
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time results from equation (12). With a constant stress oo and  Yx = 1
we have g
Q 2
by = === 2" v o, ()
Ca; a0 b

The symbol p, denotes here the

t@e depth of ply cragk, while 2b denotes the width of a component (cf.
Fig. 6). The material constants C, Qc and v, which appear 1in the

damage accumulation Tlaw ﬂ4), must be determined empirically. The function
F = KI“FEB may be obtained from the LEFM catalog of the K-factors. An

alternative way of writing equation (14) is

radius of a reinforcing fiber, aO is

(ao/oc)" = B(tp/t,) (15)

in which the constant B and the reference time tgp are defined as follows:

2p* VAL v aO v
B=g ) #FEH
o]
(16)
- v
vtR = 1/Cac

Inter?sting]y, equation (15) predicts an experimentally confirmed linear
relationship between the logarithm of the nondimensional applied stress,
°o/°c' and the logarithm of the nondimensional time, tl/tR’

see Fig. 8. The slope of this line is the negative of fhe~reciproca1 of
the dﬁmage exponent wv. Of course, for arbitrary 1loading histories
o(t) it is to be expected that some deviations from the straight 1line
shown in Fig. 8 will occur. Since the slope of this line depends on the
Kachanov parameters C and v, which are inherent 1in the mathematical
model, further research should focus on experimental determination of the
Toad vs. time-to-failure relationship.

ACKNOWLEDGMENTS

Thi§ study was sponsored by The Fracture and Deformation Division of the
Na?1ona1 Bureau of Standards while Professor Wnuk was on leave from the
University of Wisconsin--Milwaukee. A portion of the study at low temper-
atures was sponsored by the Department of Energy, Office of Fusion Energy.

REFERENCES

Rao, C. V. S. K. (1983). A Note on Fracture Toughness of Multiphase Mate

rials, Engng. Fracture Mechanics, 18, 35-38.

Residual Strength in Fatigue Based on

Chou, P. C., and R. Croman (1978).
Comp. Materials, 2, 75-84.

the Strength-Life Equal Rank Assumption, J.

2865

the Control of Crack

., d., and J. E. Gordon ( 1964). A Mechanism for
508.

ropagation in a Brittle System, Proc. Royal Soc., A, 282,

§ta, S. K., H. M. Ledbetter, and R. D. Kriz (1982). Calculated E1astjc
fonstants of Composites Containing Anisotropic Fibers. 1Int. J. Solids
tructures, in press.

wadley, K. (1975). Dilatancy:
thesis, M.I.T., Cambridge, Mass.

Further Studies in Crystaliline Rock. Ph.D.
1975.

arhanov, L. M. (1966). Theory of Creep, in Russian, published by Nauka
Publishers, Moscow, 1966, also "Some Problems of Creep Fracture Theory,"
in Advances in Creep Design, Applied Science Publishers, London, 1971,

#1-29.

Ply Cracks on Fracture Strength of

£iz, R. D. (1982). Influence of
Effects of Defects in Composite Mate-

Graphite/Epoxy Laminates at 76K.
rials, ASTM STP 836, in press.

Masters, J. E., and K. L. Reifsnider (1982). An Investigation of Cumulative
pDamage Development in Quasi-Isotropic Graphite/Epoxy Laminates. ibid.,

40-62.

#arozov, E. M., and Y. B. Fridman (1966). Crack Analysis as a Method to

Study Fracture Characteristics, Zavodskaya Laboratory, No. 8, 977-984,
(in Russian), reviewed by M. P. Wnuk (1968) "Review of Some Russian
papers Pertinent to the Fracture of Solids," Techn. Rep. GALCIT SM 67-9,
California Institute of Technology, September 1967, also in the book by
V. 7. Parton and E. M. Morozov, "Elastic Plastic Fracture Mechanics"

(74), translated from Russian, Mir Publishers, Moscow 1978.

#roz, Z. (1981). Discussion on Session 7. ibid., 405-409.

#eifsnider, K. L., E. G. Henneke, W. W. Stinchcomb, and J. C. Duke (1982a).

Damage Mechanics and NDE of Composite Laminates, in Mechanics of
Composite Materials: Recent Advances, ed., Z. Hashin and C. T.

Herakovich, 399-420.

#Beifsnider, K. L. (1982b). Damage in Composite Materials, ASTM STP 775,

552-563.

#ousselier (1981). Finite Deformation Constitutive Relations and Ductile

Fracture. Proceedings of IUTAM Symposium on 3D Constitutive Relations
and Ductile Fracture. Ed. S. Nemat Nasser, North Holland Publishing
Co., 331-355.

Paris, and G. R. Irwin (1973). The Stress Analysis of
Del Research Corp., Hellertown, PA, 1973.

Tada, H., P. C.
Cracks Handbook.

watt, J. P., G. F. Davies, and R. J. 0'Connell (1976). The Elastic Proper—
ties of Composite Materials, Reviews of Geophysics and Space Physics.

14, 541-563.

AFR VOL 4-R



2866

Fig. 1
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Fig. 3
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Distributions of the internal damage (Qp) generated during the
second phase of fracture process associated with propagation of a
dominant crack (t, < t < t,). Two distinctly different situa-

tions are obtained for the exponent v being less than one (v =-
.1, Fig. 4a) and greater than one (v = 2, Fig. 4b).
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(a) Second phase of fracture process, i.e., the dominant crack
B =

propagation as calculated for v = , v = 2, and v = 4
and a stress field oy generated by a ply crack traver-

sing the remaining ligament that is 0° ply (the crack is shown
in Fig. 1). Nondimensional crack length x = a/px 1is shown
as a function of nondimensional time 6 = t/ty.
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NONDIMENSIONAL CRACK LENGTH

o] | 1
(o] 0.2 0.4 0.6

NONDIMENSIONAL TIME

(b) Length of the ply crack vs. time (both nondimensionalized,
v = 2) shown for the three different stress fields generated
ahead of the ply crack contained in a laminated epoxy/graphite
composite in the unrelaxed state (curve labeled "mech") and
two relaxed states corresponding to the "wet" and "dry" condi-
tion of the laminate. The input data used to generate the
three curves shown was taken from the finite element studies
of Kriz (1982), see Fig. 5c.

oy, ksi
60 70 80 90 100 110
T T T T T T
20 T T T
16— Dry Wet Mech —

76 K
zZ/T
8 e
a4 |
Z/T= 0761
Crack Tip /
[} | |
400 500 600 700 800

o,, MPa

(c¢) Through-thickness variation of oy in 0° ply shown in Fig.

la for three cases: 1. Mech, mechanical load only with no
residual stresses at room temperature, 2. Dry, superposition
of residual thermal stresses at 76K in a dehydrated condi-
tions, 3. Wet, superposition of residual stresses caused by
swelling when laminate is saturated with absorbed moisture.
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Simplified version of a stacking sequence [90°, 0"]S for which

the "double edge notch" configuration would apply. This. configur-
ation was assumed for the purpose of numerical 1.ntegrat10n of the
governing equation (6), see the curves shown in Figs. 5a and 5b.
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Comparison between the damage distributions 92, pertaining to

the second phase of fracture, as evaluated from the exact (curve
1) and approximate (curve 2) equations. It is seen that for the
expdnent v being much 1less than one (v = .1) both curves are
almost identical.
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Fig.

log(O‘OIch)

Yi=

X=log(t,/tg)

Straight 1ine shown represents the relation between the constant
applied stress % and the first critical time t1, see equa-

tion (25). Cohesive strength of the reinforcing fiber S is

used to normalize stress, while the reference time tR (= 1/Cap
is employed to normalize time.
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