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ABSTRACT

The phenomenon of crack closure is modelled by a "Contact Stress Intensity
Factor" Kc measured by the Crack Arrest Method. Using this concept, it is
predicted and demonstrated experimentally that there will be no load
interaction effect during variable amplitude loading as long as Kpax 1s kept
constant. For a reduction of Kpp, in step-down loading, crack retardation
will occur. Excellent agreement is obtained between the measured values of Kec
and the experimentally observed retarded crack growth rates. The disagreement
between the suggested relationship for the variation of Kc during

crack retardation and the measured values can most probably be explained by
the observed crack branching after step-down loading. From previous work by
Lam and Williams (1982,198L4), it is demonstrated that Kec can explain the R
effect under constant amplitude loading. This implies that crack closure
modelled on the basis of Kc can explain the effect of R, crack retardation
and crack arrest and reveals that all these phenomena are intimately related
to one another. .
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INTRODUCTION
The effect of Contact Stress Intensity Factor Kc on fatigue crack propagation
under constant amplitude loading has been investigated by Lam and Williams
(1982,198L ). Using Kc for the modelling of crack closure, the effect of R
can be accounted for. The important equations under constant amplitude
loading are summarized as follows:-—

Ka = K + Kc (1)

Ka. =K (2)
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Kamin = Kmin * Kcmax (3)
AR = K - K (L)
max mlin
Ko = f(R)AK (5)
AKe = Ka - Ka . - K¥
max min
=K - (K . + Ke - K*
max min max
= AK - Kc - K* (6) :
max z
da/dn = £ (A Ke) (1)
where

K = Stress Intensity Factor due to the applied loads.
Ka = Actual Stress Intensity Factor experienced at the crack tip.

Ke = Contact Stress Intensity Factor due to crack closure.
AKe = The Effective Stress Intensity Factor Range causing fatigue crack
growth.

K* = A material constant related to the minimum energy required to cause
fatigue crack growth. (Threshold Stress Intensity Factor)
da/dn = Crack growth rate.

The subscripts max and min indicate respectively the maximum and minimum
values of the appropriate parameter in a loading cycle.

In the existing literature, crack closure is modelled by using the crack
opening stress © as proposed by Elber (1970, 1971). However, as
demonstrated by arpe and co-workers (1976), Chanani and Mays (1977), Brown
and Weertman (1978) and Gan and Weertman (1981), © cannot account fully for
crack retardation under variable amplitude 1oading?p

Thus, it is a natural extension to investigate the effect of Kc on fatigue
crack propagation under variable amplitude loading. For the present
discussion, attention will be focussed on two-step block loading.

Tt should be pointed out that the concept of Kc is based on the compressive
stress developed along the wake of the crack due to crack closure. In these
investigations, Kc is deduced experimentally using the Crack Arrest Method.
Details of the concept and the experimental procedure employed for the
determination of Kc may be obtained from Lam and Williams (198L). Thus, both
the concept and measurement of Kec are different from FElber's Oop'
TWO—STEP BLOCK LOADING WITH CONSTANT Kmax

The first type of two-step block loading to be examined is one with constant
Kmax but different Kmin as shown in Fig. 1.

Considering that crack closure occurs during the unloading part of the cycle,
it is reasonable to assume that Kc is a continuous increasing quantity during
unloading. At any point along the unloading path, Kc has a finite but
changing value, varying from zero to K to a maximum (Kc ) at K . - It
is further reasonable to suggestthat ui84&r constant amplit%%é loadigé? at

any point of the unloading path, the value of Ke is governed by an equation
similar to equation 5. That is:-

Ke = f(RP)AKp (8)
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Fig. 1. Two-step block loading with constant Kma*'
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where the subscript p indicates the value of the variable at any point on the
unloading path. TIn subsequent discussion, the subscripts 1 and 2 will beused
to denote quantities associated with block one and block two loadings
respectively.

Thus, for the case depicted in Fig. la, Kcpay for unloading from (i) to (ii)
will be given by :-

K = f(R;)AK S

K oy, = Tl )AK (9)
which is the value of Kepgy typical of constant amplitude loading for block
one.

Unloading from (iii) to (iv) is similar to partially unloading from (i) to
(ii), that is the value of Ke will be governed by equation 8. However, the
value of Kc, Rp and AKP are the values of Kepgx, 2» Ry and LKo respectively.
That is .:-
Kemayx,2 = T(Bp)akp (10)

Comparing equation 10 with equation 5, the value of Kepmax,2 turns out to be
the Kepayx value for block two as if under constant amplitude loading. This
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amounts to saying that for the case shown in Fig. la where K remains
constant, a sudden change in K will not produce any transient or load
interaction effect since Kec ZNd thus AKe will always acquire the value
under constant amplitude logg§ng instantaneously.

A similar argument may be applied to the case as shown in Fig. 1b, provided
that Ke will still be governed by eguation 8 even when AKl is less than AKZ'

From the above analysis, it may be generalised that as long as K remains

unchanged, there will be no load interaction effect. This is in Ifact observed

experimentally by McMillan and Pelloux (1967), Porter (1972) Wei and
co-workers (1973) and Druce and co-workers (1979).

To confirm the above hypothesis that Kc will adjust itselt instantaneously
i Km is kept constant, the value of ax was measured using the Crack
Arres%xMethod after two cycles of block t%%xloading were applied. The loading
sequences are indicated in Fig.l and the results are tabulated in Table 1.

TABLE 1

Specimen No. 30 29
Load Sequence 3/ Fig. la Fig. 1b
AK (MNm ~ 372y 3h.82 17.65
R —yy 0.0 0.5
Ke, . 4 (cal.) (MNm z/i) 16.03 4.90

5 % (MNm ) 17.63 3L.87
R 0.5 0.0
Kepax,o(cal.) (Mim ~ 3/2, 4.89 16.06
Kcmax’g(mea.) (mm ~ 3/2) 5.0k 15.20

In Table 1, the values of Kc nd were calculated using equation
5« Ke was measured experimentally §%§ﬁg the Crack Arrest Method. From
Table T?xi% is apparent that the value of Kc adjusts instantaneously to
the value of block two loading immediastely aPfér the transition from block
one to block two loading. The difference between the calculated values of
Ke B for block two (assuming constant amplitude loading) and the measured
vaTues are in agreement, with only 4% and 5% difference between them for the
loading sequence as shown in Fig. la and 1b.

STEP-DOWN LOADING

In the step-down loading sequence shown in Fig. 2, both crack arrest and
retardation will be discussed.

Crack Arrest

On unloading from (i) to (ii), Fig. 2, Kcm is given by the constant

amplitude value, that is according to equa%%on 9:-
Kcmax,l = f(bl) <Kmax,l_ K'min,l)

On loading from (ii) to (iii), AKe, according to eguation 6, is given by:-

R .
bKe = 0K, - Kep .o o K (11)

I
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Fig. 2. Step-down loading.

Thus from equation T, crack arrest occurs when AKe = 0, that is:-

* (12)

BK < f(Rl)(AKl) + K

In the following discussion of crack arrest, the effect of K*¥ will be )
ignored. The reason being that if the applied stress intensity factor is
much larger than the threshold stress intensity factor, the value of K¥* will
be small and negligible when compared with Kmax and Kmin'
Note that AKe cannot be negative since a negative AKe is meaningless. This
implies that for crack arrest, from equation 6 and ignoring the effect of K¥*

= (13)
Kamin Kamax

A closer examination indicates that the second line of equation 6 is obtained
by assuming Ka s = Kmax' This means that at maximum load, ?he crgck is
completely open. However, with crack arrest, at K there will still be
crack closure. This implies that at” Ka will be e sum of K and Kc
associated with K at that instant. n fact, if K and Kc are e applied
and contact stressa§ntensity factors at any point of the loading or unload-
ing path with K greater that Kmln and with crack arrest, equation 13 becomes
K . + Kc = K + Kc (14)
min max
When crack arrest occurs, according to equation 13, the actual stress
intensity factor experienced by the crack tip material is constant since
{a. . = Ka at all times. From equation 14, this is brought about by the
in%%?actiogaéf the contact stress intensity factor due to crack closure and
the applied stress intensity factor. As the latter increases, the amount of
crack closure and thus Kc, decreases.

Therefore with crack arrest, the crack tip material experiences no change in
the stress intensity factor. It may be thought of as being "frozen" in the
particular condition before the occurrence of crack arrest. The number of
loading cycles experienced during that period of crack arrest will not alter
the subsequent behaviour. If at any time, the loading level is raised such
that crack growth occurs, the behaviour of crack growth will then be dictated
by the conditions existing just before crack arrest.

Experimental observations by Wei and co-workers (1973) indicate that the
number of cycles during which the crack is arrested has negligible effect on
the subsequent retarded crack growth behaviour. This gives support to the
above analysis.

AFR VOL 3-E*



1684

Crack Retardation

From the above discussion, it is apparent that the onset of crack arrest is
caused by the crack tip conditions existing at Kamjn. Since crack arrest may
be treated as the most severe case of crack retardation, it is reasonable to
consider that crack retardation is governed by the same condition.

As the crack propagates under block two loading, the value of Ka_ . will
change. It is reasonable to assume that the magnitude of deviat?é% of the
various quantities from their constant amplitude loading values in block two
will in turn affect the way in which they change. Thus the relevant
parameters to be considered will be (Kamin - Ka .o c2) and (Kami a1 =
Kam'n 2) where Ka i is the actual minimurh stress’intensity fac%dr at any
ins%aﬁ%. The quan 1Pies with subscripts cl and ¢2 indicate the values
associated with constant amplitude loading for block one and block two
respectively.

Further, immediately after step-down loading, the conditions ahead and in the
wake of the crack are typical of block one. As the crack propagates under
block two laading, the influence of block one will slowly decay. Thus, crack
retardation should be related to the distance the crack propagates into the
monotonic plastic zone due to K The relevant parameters should then
include (a-a ) and d. where a aﬁ xél are respectively the crack lengths at

any instance and at the instance ofostepping down and dl is the monotonic i
plastic zone due to Kmax,l'

Based on the parameters identified above, it is proposed that:-

(Kamin - Kamin,c2)/(Kamin,cl - Kamin,cZ) = g[(a—ao)/dl)] (15)
The boundary conditions to be satisfied are:-

= = = K =; .0 6

a-a, 0 Ka'min amin,cl € 1 (16)

a-a  * = Ke ;. = Kapin oo g = 0.0 (17)
If Kc is known, the values of Ka nay be calculated according to

equat?%ﬁ 3. In this investigation,mas the crack propagated under block two
loading, Kcm s was measured as a function of crack length using the Crack
Arrest Methoa. Two specimens were used for each set of loading 1imits and
generally three readings were obtained from each specimen.

For the calculation of Ka in.c and 8 in.e2? equation 3 was used. However,
the value of Kc . Wwas obgalﬁe% using equé%lon 5.

To calculate d., in order to take into account the effect of the finite
specimen size, Rice's (1966) longitudinal shear solution for an elastic
perfectly plastic material and the analogy between longitudinal shear and
tensile loading (McClintock, 1961; McClintock and Irwin, 1965) was utilized.

Alternatively the value of Ka . may be calculated through the measurement :
of da/dn. If da/dn is known, 8 may be obtained from the log-log plot of
da/dn versus AKe, see Lam and Williams (198Y4). Then from equation 6, with :
the value of K and K¥ known, Ka . may be calculated. The value of K¥ may !
be obtained £rB2%,am and Williams T188L). For the measurement of da/dn after
step-down loading, a different specimen was used for each loading limit. It
should be noted that if the values of Xa_ . obtained independently by either
+the Crack Arrest Method or the da/dn Metgég agree, then a rational

explanation of retardation by crack closure will be substantiated.

pe——-
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Two loading conditions were investigated with R approximately equal to zero.

The results are shown in Fig. 3 with the parameter (Ka_. - Ka_ . Y/

(Ka_ . - Ka_. ) plotted against (a-a )/4a. . min wsee

min,el min,c2 o 1

5.0 From Fig. 3 it can be seen that
d indeed excellent agreement is

— obtained between the wvalues of

| m Crack Arrest Method Ka .. measured by the Crack Arrest

* da/dn Method Megﬁog a§d by the da/dn method.

= This indicates that the phenomenon

- of crack closure as modelled by Kc

can account for crack retardation.

A close examination of Fig. 3
indicates that the boundary
- condition as stated in eguation 16
— B for the relationship proposed by
equation 15 does not seem to be
satisfied. At a-a_ =0, the function
1.0 . o x g [(a—ao)/d ] assumes a value
approximate}y equal to 1.5 instead
# of 1.0 as required. The higher
value of the function indicates
- x O a higher value of Ka . and Ke
than expected. mrn H

ax

A possible explanation of the above
* discrepancy is due to the effect of
o crack branching which was commonly
observed after step—down loading.
- The interaction between the two
a different branched cracks may bring
about a higher value of Kc s It
I (S (e E | should also be noted that TRE
8.5 1.8 parameter (Ka Ka . ) i
55w JOLTL Tln c? P
[(a-a y/d.)1 very sensitive. Small changes in
o 1 the measurements of Ka . may bring
Fig. 3. large changes in the vgiﬁe of the
Showing the variation of Ka parameter.
as the crack propagated under
block two loading.

| | | 1

CONCLUSION

Using the concept of crack closure as modelled by the Contact Stress Intensity
Factor Kc, it was demonstrated by Lam and Williams (1982, 198L) that the
effect of R under constant amplitude loading can be accounted for.

Under two-step block loading, using Kc, it is further predicted and
demonstrated that as long as Kpay is kept constant, there will be no load
interaction effect with changing Kpjn- Further, excellent experimental
agreement was obtained between the measured value of Kc and its effect on the
fatigue crack propagation rate after a reduction of Kpay Where crack growth
retardation was observed. To the best knowledge of the authors, it is the
first time that good agreement has been obtained between the measured value

of crack closure and retarded crack growth. Since Kc is measured by the Crack
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Arrest Method, this further implies that using the concept of crack closure,
the phenomena of crack arrest and crack retardation under variable amplitude
loading and the R effect under constant amplitude loading are intimately
related to one ancther.

Disagreement exists between the suggested relationship as defined by eguation
16 for the variation of Ka_ . during crack retardation and the experimental
observations. A higher vaTﬁgs of Ka . and Kc were observed. This most
probably can be explained by the pregence of crack branching after step-down
loading. With crack branching, due to the interaction of the branched cracks,
a higher crack arrest load and a lower crack growth rate should be expected.
This will then give rise to a highér calculated value of crack closure.
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