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ABSTRACT

A series of fatigue crack growth tests under variable amplitude loading has
been conducted on semi-elliptic notched plate specimens made of structural
steel BS4360 - 50D, used for offshore oil platform construction. The tests
were carried out under pure bending. Two different power spectra, a "broad
band" and a "triple-peaked", were chosen for generation of random loading.
The effect of thickness, mean stress, band width and power spectrum shape
on crack growth rate have been studied.

The results of these tests have shown that resistance to fatigue fracture
is independent of thickness within the tested range of 25 to 34 mm.
Increases in mean loading stress and band width for a given power spectrum
enhance the crack propagation rate. Of the two power spectra examined, the
triple-peaked one had an increasing influence on the crack growth rate
results.
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INTRODUCTION

Constant amplitude (CA) fatigue data have been successfully fitted by a
power-law expression (1) of the form:

da n
= = CcAK
anN
in the second region (Paris régime) by the application of LEFM. This

ordinary di fferential equation may be used to determine the structural
integrity and life estimations of the various engineering components and
structures which experience variable-amplitude service loads. However,
the outcome of such an analysis is not always accurate due to variation
in the fatigue behaviour of materials under random loads. In order to
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avoid discrepancies between the service 1ife and the estimated 1life,
components or specimens should be tested under real service load
conditions. Unfortunately, this approach may not always be practicable
and economically viable, so the tests are carried out under simulated
service load conditions.

Parameters inherent in simulated loads influence the fatigue crack growth
rate data and such effects magnify under ‘adverse environmental conditions.
The influence of mean stress and frequency on crack propagation rates has
been studied under CA (3,5,6) and random loading (4,7,8,9). The tests
conducted on structural steel under CA loading in air (6) have revealed
only a very small mean stress effect and shown that the reduction of
frequency enhances growth rate. The fatigue behaviour of two different
steels under random loading was also tested in both air and seawater

(7,9) and when combined with the reduction of frequency a large mean
stress effect was observed.

Geometry changes, such as thickness and size, may also influence crack
growth rates. Thickness effects under CA and random load have been
examined (6,8). Under variable amplitude loading (8) at low growth rates,
the increase in thickness enhances crack growth resistance, while this
behaviour is reversed at high growth rates.

Fatigue behaviour also changes as load amplitude variation is introduced
(4,8,9). This is due to the load sequence effect. Crack propagation rate
differences due to CA and random loads have been examined by Smith (4).
His study included the effects of two different power spectra (narrow band
and double-peaked-spectrum loads) on the growth rate. It was concluded
that at low stress intensity factors, the growth rate caused by random
loads was higher than CA results while this effect was reversed at high K
values.

To obtain relevant fatigue crack propagation data of structural steel due
to simulated loads, the influence of frequency range and power spectrum
shape on growth rate must be studied. Mean stress and thickness effects
are also significant. The influence of thickness for the range of 12 to
50 mm was examined by Musuva (6). In the tests reported here the range of
frequencies within wave loading was between O and 0.3 Hz, and the spectral
shapes suggested varied from narrow band to double-peaked and broad band
(BB) spectra. However, a study of the dynamic response of a North Sea
Forties Field platform (10) produced a triple-peaked spectrum which was
incorporated into the pseudo-random signal generator developed at Imperial
College, London.

The fatigue behaviour of structural steel BS4360 - 50D was investigated
under the above spectrum (referred to as the BP spectrum) , and also using
a broad band signal. The amplitude variation of the two different signals
had a normal distribution with zero mean.

EXPERIMENTAL PROCEDURE

Five bend specimens were made from two different thickness plates of
structural steel BS4360 - 50D; two of 34 mm and three of 25 mm thick.

The yield stress of the material was 388 MPa. (6). The centre of each
specimen was notched with a 30° angled cutter. The notch was perpendicular
to the rolling direction. The surface notch dimensions are shown in Fig. 1
The specimens were tested under pure bending. The test load system was
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RESULTS AND DISCUSSION
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where Ob is the surface bend stress.

T, a, ?
M () = 1+o0.12 Q-2
Oe1
= _ a &
Moo= 1-136 @ &
M (0) M = Mg
a a 12 a12
Mee = M) (1-0.3 (@) (- (@) ) +0.394 E® (D) Ve/a)
a a i
M = (.21 - 0.1 (5 + 0.1 & ) Ya/c
{ e [ 4
1-64
E(K) = (1 + 1.47 (%) )

£ e 5 d

Mo = 1t Tommanr
a a a ? 5 '3 At
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[o] c P S 2
L P c c 2 c .
G(W) = -0.0239 + 1.434 (W) - 2.984 (W) + 7.822 (W)
a a a 2 a 3
H(3) = -0.0113 + 0.323 (§) +0.749 (3) - 0.535 ()

The K is calculated from the above e¢xpressions by replacing 0. with o e
rms b rms
To examine the influence of thickness on the crack growth rate, the
fatigue data of specimens S1 and S2 were compared. Specimen S1 was 25 mm
thick and S2 34 mm thick. The notch size was identical for the two
specimens. Due to the change of thickress, the stress intensity factor
distributions were different for the two specimens. This effect is
depicted in Fig. 3 which is a plot of the K versus crack dimensions.
The stress intensity factors at the depth agg at the surface tips of a
semi-elliptical crack are functions of thickness and width, as well as of
the crack geometry. K at the surface tips is more sensitive to crack
geometry change than K at depth. At the same time, the increase in the
crack depth influences the K values more significantly than the surface
length. These effects were clearly duplicated for the two specimens.
However, the ¥ distribution for the thicker specimen had a second effect.
After precracking, although K values at the surface tips for the two
specimens were identical, the K at depth,K_, for the thicker specimen was
much higher than K at the surface, K . This K_ remained predominantly
higher than K _for a large part of crack propagation. The K distribution
curves of the S2 specimen crossed each other at the surface length, which
was about 36% higher than the length where the thinner specimen K-curves
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i However,
¢+ same K distribution for the two specimens.
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Finally, a third 25 mm thick specimen (S5) was tested under a broad band
signal of band width of 15 Hz at a Q factor of 8. The results from this
specimen and S1, which was loaded with a Q factor of 12, are illustrated
in Fig. 7. Under CA and random loading, the increase in mean stress
enhances the crack pPropagation rate. This same effect is observed in
Fig. 7. The mean stress effect is more significant in cases of random
loading. The mean stress enhances the maximum stress intensity factor
levels which control plastic zone size, or open up the crack mouth. The
latter situation is detrimental under low frequency loading in adverse
environmental conditions.

CONCLUSIONS

The linear elastic fracture mechanics approach was applied to fatigue data
obtained during the course of this study to relate crack growth rates at
depth and at the surface tips of semi-elliptical surface cracks to the
corresponding rms of the stress intensity factor, K , of plate bend
specimens of BS4360-50D structural steel. It was cgggluded that:

1. within the range 25 to 34 mm, the growth rates are indepenent of
thickness.

2. 1Increasing the band width enhances crack growth rates under broad band
signals.

3. At the low frequency range of 0.32 Hz, which is relevant to the wave-

loads and dynamic response of oil platforms, the triple-peaked spectrum

loadings are more detrimental to the crack propagation behaviour of
steel than to the broad band loads.

4. Increases in mean stresses reduce the fatigue crack resistance of steel.
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Dynamic analysis of

TABLE 1 Test Programme Plan

Specimen Thickness width Load Signal Frequency B?ndwidth Q
Code (mm) (mm) (spectrum) (Hz
s1 25 120 BB 9 = iz i;
s2 34 100 BB o - ) 2
S3 34 100 BB o - 0.3 2
sS4 25 120 BP o - OigZ &
s5 25 120 BB o
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