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ABSTRACT

The growth of the dominant microcrack was monitored in low cycle fatigue
specimens using a potential drop technique. Two cast superalloys with a
fairly large grain size were studied : a moderate strength cobalt-based
alloy MAR-M509 at 600°C and a high strength nickel based alloy IN 100 at
1000°C under vacuum. Fatigue crack growth rates results showed a good
correlation with cyclic J integral for the first alloy but are poorly
correlated for the second one. A good agreement with data from long cracks
in CT specimens was obtained introducing a plastic zone correction equal to
the grain size.
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INTRODUCTION

High temperature “low cycle fatigue damage in plain specimens can often be
considered as the growth of a dominant microcrack up to a depth about 1 to 2
mm. This has been shown recently to hold in MAR-M509, a cast cobalt based
superalloy, due to early crack initiation (Reuchet and Rémy 1979,1983). A
sound fatigue 1life prediction can be expected only if one is able to
describe the growth of such a crack under various test conditions. A
promising way is to use an elastic-plastic fracture mechanics approach.

The range of stress intensity factor AK has proved to be a powerful
correlating parameter in fatigue crack propagation under small scale
yielding conditions by facilitating the treatment of crack growth data from
different specimen geometries. For cracked members where gross plasticity
may occur under monotonic loading, it has been necessary to introduce
characterising parameters such as the line integral J (Rice, 1968) instead
of K. As Paris did previously with K (Paris, 1964), recent experimental
works tried to extend J integral to cyclic loading. Though no theoretical
justifications for such an extension are yet available, this approach has
proved to be successful for deep cracks (Dowling and Begley, 1976) and more
recently for short cracks (Dowling 1977, El Haddad and coworkers. 1979) .
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Short cracks have been reported to propagate faster than long cracks even in
the regime of linear elastic fracture mechanics (LEFM), (Dowling 1977,
El Haddad and coworkers 1979, Taylor and Knott 1981).

Therefore the present work was undertaken to clarify the behaviour of the
dominant microcrack in fully yielded low cycle fatigue (LCF) specimens. As
grain size was thought to be an important parameter, two cast superalloys
with a fairly large grain size, used as vane and blade materials, were
investigated : a cobalt based superalloy MAR-M509 of moderate strength and a
high strength nickel based alloy IN 100. As oxidation can have a very large
effect on crack growth rate at high temperature (Reger and Rémy 1982), care
was taken to avoid any environmental influence. So MAR-M509 and IN 100 were
studied in air at 600°C and in vacuum at 1000°C respectively. Fatigue crack
growth rate (FCGR) results from short cracks on fully yielded LCF specimens
are so presented and compared with long crack results from LEFM tests. The
existence of a '"short crack" specific behaviour is then discussed.

MATERIALS AND EXPERIMENTAL PROCEDURE

Two alloys were used in this study MAR-M509 and IN 100. The composition of
the heats used is (in wt pct) for MAR-MS09 : 0.89C,; 11Ni, 23.2Cr, 7W,
3.31Ta, 0.3Zr, 0.22Ti, 0.17Fe, bal.Co; for IN 100 : 0.18C, 14.7Co, 10.3Cr,
3.15Mo, 1.01V, 4.60Ti, 5.68Al1, O.15Fe, bal.Ni. Specimens were taken from
cylindrical castings of 20 mm in diameter. The as cast cobalt base alloy was
heat-treated at 1230°C for 6 hours before machining. The average grain size
is about 0.8 mm for the casting conditions used. The corresponding
microstructure is that of a face centered cubic (fcc) matrix with a few pct
of interdendritic carbides.

The as cast nickel based alloy was heat treated at 1150°C during 3hrs before
machining, to simulate the coating heat treatment. The average grain size is
about a few millemeters.in the casting conditions used. The microstructure
is that of a fcc matrix, which is hardened by a high volume fraction of fine
Y' precipitates, with interdendritic MNC carbides and large areas of blocky
Y.

Low cycle fatigue tests were carried out on cylindrical specimens 8 mm in
diameter and 12 mm in gauge length using axial, total strain control.
Specimens were heated by a radiation furnace. The tests were conducted on a
modified screw-driven tensile testing machine for most tests and on an
electrohydraulic machine for the higher frequencies. The load was conti-—
nuously recorded as well as stress strain hysteresis loops occasionally. Saw
tooth total strain cyclingafuliy reversed was _carried out at a constant

strain rate ét about 7 10 = s and 2 10 s for the cobalt and nickel

ba§§ alloy respectively. This corresponds to a reference frequency of a few
10 "Hz.

Saw tooth strain cycles were also applied to IN 100 under vacuum at 1000°C
using a frequency thirty times higher, i.e. about 1 - 2 Hz._A vacuum
chamber, mounted on the testing machine, enables a vacuum of 2 10 ° Pa to be
maintained throughout the test.

Low cycle fatigue tests on MAR-M509 at 600°C in air and on IN 100 at 1000°C
in vacuum are presented as well as LEFM tests on CT specimens (with
dimension W=32 mm and thickness B=6 mn).The latter were carried out at the
frequency of 20 Hz in air at constant amplitude loading with R=0.1, on an
electrohydraulic machine.

the two alloys MAR-MS509 (at 600

This
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in the case of the ﬁong crack loaded in the LEFM range (CT specimens) cyclic
was taken as (AK)“/E as usually (Dowling, 1977).

TEST RESULTS

The FCGR from smooth LCF specimens of MAR-M509 tested in air at 600°C are
reported as a function of cyclic J integral in Fig. 1. Cracks loaded under a
given strain range exhibit a nearly smooth variation of FCGR with cyclic J
(or crack length). In addition all the strain ranges correspond to a single
FCGR-cyclic J curve within the experimental scatter. Further these short
crack results and the crack growth curve determined from LEFM tests on CT
specimens, as shown in Fig. 1, are in pretty good agreement. FCGR of short
crack is only E%gher than that of long cracks for the lowest strain range
(Ae = 4.5 10 ) the FCGR is about three times that observed on the CT
spegimen. So for this material short cracks in a elastic-plastic regime
behave nearly like long cracks in the linear elastic regime.

The FCGR from LCF specimens of the nickel based superalloy IN 100 tested in
vacuum at 1000°C and at two frequency ranges, are reported as a function of
cyclic J integral in Fig. 2. For comparison results obtained at a frequency
of 20 Hz in air on CT specimens are included in this figure. As a matter of
fact, for frequencies higher than 1Kz, the FCGR is actually independent upon
frequency so that crack growth in air is similar to that observed in vacuum
(Reger and Rémy, 1982 b). So results from CT specimens at this frequency can
be taken as representative of vacuum results.
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strong differences are observed with respect to the

srowth rate is quite independent upon crack length.
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MAR-M509 at 600°C in air. 1000°C in vacuum.

grain size) and in Fig.4 for IN 100 (with the grain size of every specimen).

The agreement between results from LCF specimens and those from CT specimens
which was fairly good without correction for MAR-M509 at 600°C is slightly
improved. This is mainly visible for the lowest plastic strain range. This
follows from the fact that the plastic contribution of J Integral is always
larger than the elastic part except for the lowest strain level.

As can be expected, the effect of the plastic zone size is extremely
important for the short crack results in the nickel based alloy. Firstly for
a given plastic strain range, the near plateau regime has disappeared.
Further within the experimental scatter results from different specimens can
now be described by a single Paris-type equation

da/dN = C (J m
ceycla)
where C and m are two constants (m is about 2.5 for IN 100 and 2.2 for
MAR-M509). FCGR results from LCF specimens are in fairly good agreement with
results from CT specimens. This drastic influence of the plastic =zone
correction, on short crack FCGR curves in this alloy, results from the large
grain size and also from the fact that the elastic component of cyclic J
given by Eq 2a is always higher than the plastic component given by Eq 2b.

Thus a plastic zone size correction taken as the grain size is very effec-
tive in bringing together FCGR results from short cracks in fully yielded
specimens and from long cracks in LEFM CT specimens. From the present
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results short cracks in LCF specimens propagate at a much higher rate than
long cracks only when the elastic component of cyclic J integral is
predominant over the plastic component. This effect is especially important
for crack lengths smaller than the grain size.

CONCLUSIONS

The present investigation of the microcrack behaviour in fully yielded LCF
specimens of two cast superalloys have shown that microcracks can propagate
much faster than long cracks in CT specimens (as in the nickel alloy IN 100)
or nearly at the same rate (as in the cobalt alloy MAR-M509). FCGR from
microcracks in fully yielded specimens are in good agreement with those from
CT specimens when one introduces a plastic zone size correction in the
clastic component of cyclic J integral (the plastic zone size being taken as
a grain size).
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