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SUMMARY

five fatigue failure criteria are formulatéd for a random

triaxial state of stress whose components have zero mean values.
It is assumed that fatigue failure is determined by the stress

and strain components that act on an expected fracture plane.

[t is shown that in some special cases the proposed failure theo-
ries reduce to classical theories applied for sinusoidal stresses.
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1. INTRODUCTION

Loadings that change randomly with time result in random states
of stress. It means that material undergoes fatigue under the
influence of stress components that are stochastic processes and
the principal stresses change their magnitudes and directions in
a random way. :

The available test results for materials under complex states of
stress are limited to a harmonic in-phase [2,3,6,7] and out-of-
phase loading [1,8]. The only stochastic loadings experimentally
studied so far do not extend beyond the uniaxial case 4,513

It is clear therefore that any prospective fatigue research
attempts involving a multiaxial stochastic loading should be
based on sound theoretical foundations. With such an aim in mind
the present author has formulated five fatigue failure criteria
for isotropic materials under a random triaxial state of stress
with zero mean value components. It is assumed that random stress
tensor is a 6-dimensional stationary and ergodic Gaussion process
with low-band frequency.The location of a fracture Rlanq‘will be
given by the mean values of direction cosines L, M,, Apn=1,2,3)
of the principal stress axes o, z 01'3'03 . The following nota-
tion will be used: T, will stand for the fatigue limit normal
stress determined in zero mean load uniaxial push-pull tests and
Tqz will denote the fatigue limit shear stress determined under
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alternating torsion loading conditions.
2. CRITERION OF THE MAXIMUM NORMAL STRESS ACTING ON
A FRACTURE PLANE

We shall assume that:
1. Fatigue fracture is caused by the normal stress Gk(t)acting
on a fracture plane (t-time).

2. A fracture plane is perpendicuiar to the mean direction along

which the maximum principal stress O;(ﬂacts.

According to the above assumptions a fracture plane is defined by

the unit normal vector . — A - P
- - - n =L'L +M4J+n1k,
where i,j,k. are cartesian basis vectors.
The normal stress Op (t)acting in the plane is n
A2 A2 A2 ~
Ty (k) = L Cix (£) + My Cyy (E1+ N4 02z (B) + 2L M, Gy (1) *

" ‘I)

If O,(t)exceeds Ogx then structural damage will accumulate in
a material, resulting in fracture. For a limit state correspon-
ding to the fatigue strength the mathematical form of the cri-
terion is (Fig.1)

max {0y (8} = Gux (2)
¢ oy (¥

mofopt]ecme I moxfa@f= o | max{r o) e,
no fatigue fracture limit state fatigue fracture
appear

Fig.1 Results of acting Oy (t) with various
maximum values in time

In oder to show that in a special case the above criterion redu-
ces to the classical maximum principal stress theory under sinu-
soidal stresses [5]
Jaq1 = OCaz 3

it is sufficient to assume that normal stresses Oy :(¢),(<= x.y,2)
have constant directions along the x,y;z axes, respectively, and
are given by the formula

O (£) = Ogn Sinwt , (N~ 1,2,3),0¢= %x,Y:2) (&)

Taking additionally [,= 1, we obtain

WEax i Ué(t)} = Oaq = Yaz
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%, CRITERION OF THE MAXIMUM STRAIN IN THE DIRECTION
PERPENDICULAR TO A FRACTURE PLANE

flere we will assume that:
|. Fatigue fracture is caused by the strain £ (t)appearing in the
direction 9 perpendicular to a fracture p%ane.

A fatigue fracture plane is perpendicular to a mean direction
which is the direction of the principal strain &, (¥).

Since for an isotropic body the principal stress and strain direc-
tions coincide the two fracture planes determined by the mean di-
rections of the maximum principal stress and strain will also
¢oincide. ) -

I'he strain.Ezﬁ)in the direction 9 perpendicular to a fracture
plane may be~“expressed, similarly as o, (t), in the following way

g,¢8) = LI e e) + MiE B+ AlE,, () + 2T M, B (0) +

A A A )
+ ZL‘V\,‘sz(t)“' 2 m, n, Evz (t
Making use of Hooke’svlaw
1+ v ] .o -
= 2v ¥ e e ‘. bt z
8‘:]( = E (U"J AtV 6kk 61-1 )/ ( LfJik )‘ly‘ ) (6)
where E - Young’s modulus, Y - Poisson ratio and
. { 1 for ¢ :]-
“ 0 for <#/

we oObtain
E &, t) = [T2(1+9)-v]onkt)+ M1 (4 #v)-v] oy (2) +

+ [A(A+Y) V] Opz (8) 42 (14V) L Ma Oy (¢) + (7)

+2(AFV) TPy Op (£) + L{A+Y) MR Oyx (E)

For a limit state corresponding to the fatigue strength the cri-
terion will take the following form
Wk&X{EEQCf)} = Oaz (8)

In a Barticular case when normal stresses are given by formula (4)
and {,= 1 we get in view of (7) and (8)

Opa =V (Gaz + Faz) = Gaz ©)
30, we arrive at the classical maximum principal strain criterion
for a sinusoidal loading [51.

4. CRITERION OF THE MAXIMUM SHEAR STRESS ON A FRAC-
TURE PLANE

This criterion is based on the following assumptions:

1. Fatigue fracture is caused by the shear stress Tps (t) acting in
the € direction on a fracture plane.

2. The direction of § coincides with the mean direction of the
maximum shear stress Z}[t)and the fracture plane is determined
by a mean location of either of two planes in which 2}[&) is
present.

As it is known the maximum shear stress T4y in the coordinate

system of principal axes 1,2,3 acts on a plane coming through

the axis 2, inclined at M/4 to the axes 1 and 3.

The stress direction is perpendicular to the axis 2 (Fig.2).

If the directions 1,2,3 are mean directions of principal axes
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then, according to Fig.2, the unit

vectors S, % and (directed along 3
axis 2 ) form a new constant set of

axes rotated with respect to the

x,g, Z coordinate system.

Cosines of the rotation angles ex-

pressed by the mean cosines of 77 3
principal axes are given in A z

Table 1. 2

Fig.2. Location of T4 in
a plane perpendicu-
lar to the princi-
pal axis 2

Table 1. Rotation angle cosines of §,? ,? system
of coordinates relative to X,y, z system

Y =z

s L = s My = My ne - ';"3
| 7|

z L4+ (.3 M4+|AM3 y/\\‘+ﬁ3
L3 1z VZ
§ Lz ﬁkl Gi

The shear stress T’s(f) may be found by usin
th i
law for stress tensor components Y & e transformation

O}p(t):o(ﬁ o(ﬂjc'i,“t)l (rif=5:2,8) (&, = x,9,2)

where O are cosines of axis rotation angles.

(10)

Making use of the values given i i
oo ?is(t) given in Table 1, we get the following

A2 Az . A2 A
2ys(8) = 0.5 = [3) Gn (2) + 0.5(MI- W) oy (4) v
A2 A W A ™A

+O5(RL- A3)oss @) ¥ (Lama—Ls M;3) Oxy (1) +
. a A s A A 3
F(Lghe = Byhy) Oxz @) + (W4 = W31, ) Oy (1)
In a 1limit state corresponding to the fati ;

y C gue strength the maxi-
mum Yalue of shear stress 25(*)15 equal to the corresponding
amplitude of the maximum shear stress associated with a sinusoi-
dal push-pull test performed at the Caz level.

Hence, the criterion takes the form .

. M‘L_AXiZTQs (t)} = Oaz (12)
It is to be noted that the magnitude of stress vector T ()
%agnot be regarded as the only factor governing fatigueqfracture.
his can be proved_by taking a hypothetical state of stress where
a plane of the maximum shear siress with a normal Z (Fig.2)
remains copstant with time. Lei the maximum shear stress T, ac-
E}ng on th%s plane have a constant amplitude but let its direc-
tion vary in a random fashion. Such conditions are sufficient
for fatigue fracture to occur provided the stress is high enough.

1)
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uniaxial loading fracture should

st it would mean that under a
to a stationary stress T, which is

secur in a specimen subjected
not true.
i{ normal stresses are assumed to vary sinusoidally according to
t4) and Ly= ny = 1 then in view of (11) and (12) we get

Couq Caz = Oaz (13)
50, we arrive at the classical maximum shear stress criterion for
s sinusoidal load L51.

5. CRITERION OF THE SHEAR STRESS ENERGY IN THE DIRECTION
OF MAXIMUM SHEAR STRESS ON A FRACTURE PLANE

ilere we assume that:

|. Fatigue fracture is governed by the specific elastic energy
of shear deformation equal to the specific work done on the
shear strain in the direction S on a fracture plane.

©. The & direction coincides with the mean direction of maxi-
mum shear stress T4 (t)and the fracture plane is given by a
mean location of either of the two planes containing T, (¥).

The specific work done on the shear strain Qs () in the direc-
tion of § (Fig.Z) is given by the expressiog
Gs)

o~ A+ VY 2
; st(f) = Lzs(f) Ezs(f) = TZS (¢)
for a uniaxial stress system where Oxx )= d‘zsinwt) f,zsis given
. Bs _ A+4Y 2 < 2
8yt = Zg ez simwt (15)

Assuming that in a limit state corres onding to the fatigue
strength the maximum value of energy s (t) in a random state of
stress is equal to the maximum value of energy in a uniaxial
state of sinusoidal stress, we arrive at the following form of

‘h it i 1 o~
the criterion ‘mg\x { 2 Tys (t)} = OCaz @6)

Expression (16) turns out to be the same as (12), i.e. the cri-
terion of maximum shear stress.

It should be noted that the specific work done on shear strains
on the whole fracture plane with a normal 9 (Fig.2) is given by

() = ALE [Tt Ths (£)] (17)
s24 E 2 2
If we assume such a state of stress that )
Tys (t) = Ty sin wt ; Ty (¥)= Ta sin(wt +1/2) (18)
then from (17) we get
1+V o~ 2
é;zf(t) = E ?; = const., (19)

i.e. a time-independent amount of shear strain energy that can
be safely absorbed by a material subjected to a one-dimensional

loading.
The total shaﬁfbstrain energy - 2
ﬂ ) = g {[o;x (t) - Oy, )]+ Loy t) - Oz @)1+
2 2,y
+[Cuz B)- O () ]+ 6[ Txy )+ Oxz(t) + Oyz Ct)_]}

cannot be treated as a reliable basis for random fatigue life

(20
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predictions either, since it is easy to present an example where
stresses changing with time will cause fatigue fracture although
the energy f%(t) will remain constant. i
To show that'it is sufficient to take

Oux (t) = Oasinwt ; o (t) = g sin(wt +T/3)
and the remaining components ;- (t) = 0, ( Qj = xty.Z)-
After substituting to }20), wef§§; 5
QF({) = —4—-é— Ty =const. (21)
Likewise, if we take oy, (t) = g sinwt, c;y(t):{a;/m]san(wtﬂr/z)

and the remaining components &.-(t) =0, ({,j= x,y(z)then the total
strain energy ! J

Fit) = ;—E{d,ic't-)»f oy () + oL () - 2v [Gax(t) Tyy(E) +

. (22
+ Oy () Gz (£) + Oux (1) Oz )] +2(4+v) deﬁ (¥)+ ?
+ & () + oyx (4)]]
becomes constant and is equal to .2 )
&)= -ﬁ— = const. (.23)

6. CRITERION OF THE MAXIMUM SHEAR AND NORMAL S3TRESSES
ACTING ON A FRACTURE PIANE

Here the following assumptions are made:

1. Fatigue fracture is caused by normal ghﬁ?and tangent T, s(f)
stresses acting in a fixed direction s~ on a fracture p%ane

with a normal 7:

2. The § direction on a fracture plane coincides with a mean
direction of the maximum shear stress Llywmax t).

%, In a 1limit state corresponding to the fatigue strength the
maximum value of a combination of stresses Iys(%)and o (t)
under a complex random loading is constant and can be written

o~ - L
-~ max § Tys (8] + Ky (B)f = F (o4)

where K, f,F- - material constants determined in sinusoidal
loading tests.

Criterion (24) is a general form of a number of criteria applied
for sinusoidal loads. They differ in various values of the adop-
ted K, I, F parameters and the assumed location of fracture plane
(or critical shearing plane).

Consider a special case by taking the S direction to coincide
with a mean direction of maximum shear stress T,(¢) and by assu-
ming a fracture plane to be determined by a mean location of
either of the two planes containing T,(¢J. Then the following form
of the criterion is obtained ‘

A2 H2 R
max £0.5(10- 15 ) g (4)+ 0.5(R7- 1 3) Oyg () + 05 (A2 ~3) 0z (8) +

(D W - T, My) 0 @) (e, - T3n3) oz (O) &
+ (MR = My 7y) Opr (B) + K [0.5 (1, +13)% opx () +

A A 2
+ 05 (Mmo+ ms)"o—nct) 4+ 0.5(Na + V) 0, (8) +

(25)
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(T TPy e @) Gy (8) + (Lo v T3) R A3) G (O %
+ (M+ M)+ N3) 0 z(f)]r} = F

:nxingﬁaddiggonally that normal stresses follow formula (4) and
that Llg = Nz = 1 , we have

0.5(Tpy - Opz)+ K [0.5(Can * Cus)] = F (26)

rurther, if we_take the constants to be K = (Z-?Qz/oaz)"’, F=0Caz
(after Matake [61 and Stanfield [81) and +=1 , then we arrive
4t the so called "ellipse arc" criterion due to Gough 27

{t is possible to formulate a criterion based on octahedral stres-—
ses, thus implying that fatigue fracture is caused by octahedral
normal G ¢, (t) and octahedral shearing Toet.ps (t) stresses acting in

a fixed §1gection S on an octahedral plahne with a normal »p ,
similarly as in criterion (24) . Such a condition may be useful if
the principal directions remain constant relative to a fixed x,4,z
coordinate system. Otherwise, the octahedral plane with a normal

z will not maintain a permanent location. In order to fix its
165cation one should assume the mean principal directions.

Then, however, the normal and shearing stresses in a chosen direc-
tion on such a plane would not be octahedral at each instant t .
1t is not possible therefore to use an octahedral stress criterion
if a random stress system is involved.

7. CONCLUSIONS

1. Out of the five proposed criteria for fatigue failure two have
the same mathematical form.

2. The proposed criteria call for appropriate experimental veri-
fication.

3, It was analytically shown that scalar quantities of the total
specific deformation energy or only shear deformation energy
cannot be responsible for fatigue fracture if the principal
directions vary. This applies both to sinusoidal and random
loadings. The octahedral stresses should be also avoided in
random fatigue life predictions.
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