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ABSTRACT

The meaning of the C* concept is discussed. It is shown that this concept

is only a global approach of the material force rate concept. The field of
the material force rate density is more representative of creep crack growth
than the c* integral. As examples, corrected expressions of C* are proposed

for non isothermal cases and strain hardening creep.
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INTRODUCTION

Below the creep region, only the onset of crack propagation was considered

at first. Then stable crack propagation was taken into account. There are
similar features in the creep region. At first the criterion employed for
elevated temperature design has been that the time for crack initiation
should exceed the design life. As crack free structures do not exist in
practice, more attention is now paid to predicting the crack growth-beha-
viour under creep conditions. Unfortunately, such a prediction is not easy
for the designer, because several parameters have been proposed for charac—
terizing the creep growth rate behaviour of metals (Ellison and Harper, 1978) .

To-day, the parameter C* (Landes and Begley, 1976) seems one of the most
popular for correlations of experimental data (Saxona, 1980), but its field
of validity is not well defined. Important studies have been made about this
point (Riedel and Pice, 1980; Riedel and Wagner, 1981; Ainsworth, 1982) .
Most of them are related to the strain rate and stress fields near the crack
tip and consider very simple formulations for creep behaviour (Like Norton's
law).*Therefore it seems helpful to give a more general interpretation of

the C° concept, in the same way 2as J concept (Roche, 1977, 1981, 1983).
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VIRTUAL WORK AND CREEP BEHAVIOUR
Principle of Virtual Work

One of the most powerful tool in Mechanics is the principle of virtual work.
Equilibrium is obtained if stress working variation is equal to external
forces virtual work. But this principle is true only if continuity of the
material is satisfied (displacement and strain variations fulfill equations
of compatibility). This is not the case of fracture mechanics and a genera-
lized form of the principle of virtual work must be used (Roche, 1977). A
simple writting can be obtained in using ''generalized forces and displace-
ments" X, and u, such that X, 6u, is the work variation of external forces

dv = Jﬁ SW dv = XOL 5“& - JB GaB 1)
v

ag being parameters describing material properties perturbation related to
crack advance (ag can be called generalized material displacement, and Jg
generalized material force). If oW = 03 Se; 3 is the stress working density,
JB éae is the work due to the perturbation c%aracterized by ag.

Such a formulation of the principle of virtual work give an exact defini-
tion of the J concept. Unfortunately there is a great number of ag and Jg.
Therefore the current practice is to make the following assumption : the
perturbation created by crack advance is (fairly) characterized by the value
of only one parameter : the crack extension. This leads to the practical,
but rough approximation 8U = X Su - J B da. This give for the crack growth
rate

a=(Xi-V)/JB (2)

Quasi Static Problems (Washizu, 1975)

When the time rate of change of external forces and displacement is so gra-
dual that inertial forces can be neglected, it is obvious that the principle
of virtual work can be formulated in the conventional manner, except that

the time now appears as a parameter. The problem shall be expressed in terms
of rate. Therefore, will be considered displacement rate u. and strain rates

éij and W* such &W* = o5 Géij is substitued to the strain working density
* * * * *
8V = @§U where &V = J. SW dv sU = Jﬂ Xi ﬁi ds (3)
v S

This is only true if the variations of strain rate and displacement rate
satisfy conditions of compatibility. Such conditions being not satisfied in
case of crack growth, the quasi static formulation must be generalized.

. * *
Meaning of W and U

In many publications W is called strain energy and W* strain energy rate.
Such a practice can lead to misunderstanding. ¥~ s not the rate of W

(W = 9ij €2 m 1f W*). The same remark can be made about U* which is some-
times called "power" "energy rate' or 'creep energy dissipation rate'. It
must be pointed that U <& not the power of external forces. This power is
U = X4 which is different from U* (larper and Ellison, 1977).
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When Norton's law is considered for creep (¢ = Bo™) it is easy to see that
W* is a state function equal to nW/(n+1) and that U™ = nU/(n+1). It is the
author's opinion that these differences between W and W, U” and U are very
important and explain that c* is not the rate of J.

MATERIAL DISPLACEMENT CONCEPT - MATERIAL FORCE RATE

Spatial and Material Displacements

A particle of the body is identified by its gartesian cooFdinates x; in the
initial state. This is a Lagrangian formulationm, xj coordinates are only '
identifying a particle of material. Due to'the action of external'force gl,
this point is displaced, reaching x; + uj 1n an external referential, an
exhibits a state of strain rate €;; and a state of stress o;;. It must ?e )
pointed out that uj is a geometrical or spatial dlspla§ement (a conventiona
one), and xj and xj + uj are initial and present coordinates related to an
external referential linked for instance to the walls of the }abor§tory
(spatial coordinates). On the contrary, the §oord1nates of Fhls point are get
x; if related to the continuum itself (material of referential coordinates).

Now, perturbations are considered as possible in the continuum itself..It is
to say that the initial organisation can be chang?d_apd that the mater1?1
coordinates of one particle can change. From the 1?1t1a1 material coordlngte
xj, the particle goes to a point of'méterlal coordinates xj *+ aj gai can be
called material displacement). A trivial exawple of s9ch a situation can be
given by pastry making. If dried fruits are included in cake qougb, these
dried fruits can present some displacement befo?e ?aklng. Their displacement
is a spatial (or conventional displacement).if it is related Fo'tbe cake
mold, it is a material displacement, if it is related to the 1n1t1a} state
of the dough. In other words, material displac?ments.are corresponding to a
flow of material properties through the body (including holes and cracks).

Material Force Rate

Due to a virtual material displacement Gay, there is some c@ange 1n'the dis—
tribution of €53 and W in the body. The change in £he strain rate is ob-
viously equal to éij,k Say leading to a change of W eq9a1 9ij Eij,k.aak'
part of this change™1s due to 8ay acting as a spatla% dlsplgce@ent, i.e.

w*, 8a. Finally the variation of W* caused by matef1a1’var1at10n only (and
not taken in account by conventional virtual work) is given by

* * .

* *
W = - ¢y say where ¢, = W’k - oij €15,k 4)

* . .
Regarding material displacement &y, Ci 1S acting as a force rate density and
hence can be called material force rate density.

c* is volume density of material force rate. 1f surface discontlnuitles exist
i 1 cx i isplacement
in the body, surface density c¢) can appear. When the material disp

. e .k 3 inite
éak crosses a surface discontinulty, the variation of displacement 1s fi

1A comma followed by suffixes will denote differentiation with respect to X,
€ s
i

= 3
i,k 8x,

for instance éi

k
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*
buy o Say in this direction and 6AW = T; Auj 8a, where Ti*= ci% nj- Part
ap~

of this variation is only caused by spatial displacement AW" nj There-
fore the material variation is
* —% * * .
W = - cp Gak where ¢, = AW my - Ti Aui,k (5)

It is useful to pay attention to the exact definition of stress and strain.
If uj, 4y, €;; and éii are small there is no problem and conventional defi-
nitions can be used. ~If they are mot small (Hill, 1959), displacement gra-
dient must be chosen as strain €jj = Ui ,j 3 and stress is the Boussinesq nomi-
nal stress tensor (so that &W = 0jj 5”i,j and &W© = 943 Gui,j)‘

GENERALIZED FORMULATION OF VIRTUAL WORK PRINCIPLE FOR QUASI STATIC
PROBLEMS - INTRODUCTION OF c*

General Formulation

In the previous section, it has been shown that material disorders like
holes and cracks evolutions, etc. can be identified by the material displa-
cement concept. The resulting variation of W* has been computed leading to
the definition of material force rate Cj (volume density) and cj (surface
density). It is now possible to write the quasi static principle of virtual

work when compatibility conditions are not satisfied.

* * * %
sV = 68U —J. c. 8a. dv - f c. 6a. ds (6)
i i i i

\Y z

where T is discontinuity surface (like cracks or material slip lines).
Generalized Material Force Rate

Knowledge of the field of material displacement is needed for using equation
(6). Practically this field can be expressed as a function of a finite
number of parameters ag (called generalized material displacement), and
equation (6) can be written like eq. (1)
* *
- - 7
8V 8U CB Gae (7
* -

where Cg are generalized material force rates. This show that creep crack
growth would be described by several parameters CB’ but the current practice
is using only one.

Tridimensional Expression of C
It is necessary to define the virtual material displacement field correspon-—
ding to the type of perturbation considered. The simplest way is a transla-
tion of material properties indicated by 8a; having the same value $aj in

each point. Applying eq. (6) leads to

*
sy =6U - C. 8a. (8)
A + 13

* % —% *

= . = W . = T i @ d 9

C; Jci dV+jC1 ds f( n; JuJ’l) s 9)
v z

with
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*
The integral C; relating to a surface S is the resultant of all the material
forces rate (volume density and density on discontinuity surfaces ) inelu-—
‘od in the volume V surrounded by S.

below the creep region it is possible to introduce the energy momentum
tensor (Eshelby, 1970). In the creep region it is possible to introduce
what correspond to a stress rate tensor (energy momentum rate tensor)

* *

ij =W ij =955 YLk (10)

*
Conventional C (Plane Case)

. . * . .
Current practice 1s to apply the C concept to plane cases with straight
~rack along x axis. Therefore crack growth is assumed to be a translation
ta of material displacement field in x direction (consequently 8a is the

virtual crack growth). In writting C° = Cf/B where B is the thickness
* * %
v =80 -C B 8a an
* * » 5G
= = P 2
¢} W dy T =5 ds
T

] G wa * .
It must be pointed out that such a definition of C 1is only the consequence

of a rough approximation (the material perturbation is fully described by
crack advance).

fquation (11) can be written like eq. (2) to give an expression of the crack
growth rate. When a Norton's law is considered, mixing of eq. (2) and 11)
shows that C* is n/(n + 1) times the rate of J.

*
PATH-INDEPENDENCE OF C INTEGRAL
Condition of Path-Independence

The preceding results show that C* concept is only a consequence of the
distribution of material force density cj in the material. Obviously the
field of cf in the vicinity of the crack tip is a better indication of the
process than C". It must be pointed out that on the free surface of crack,
there is a field of surface density c? which is normal to the surface, the
intensity being higher near the crack tip.
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As done for the J integral it is useful to consider the conditions of path
independence of c*. Such a property seems to lead to a characterization of
stress and strain rate fields near the crack tip. On applying of the pre-
ceding equations the condition of path independence is the resultant of
material force rate cf equal to zero for all volumes except those including
the crack edges. This leads to the condition
* * .

cx = W,k ST 0 (12)
in every point of the body (except z small process zone in the vicinity of
the crack tip).

Conventional Viscosity
* . . . . * - *
When W is a state function, the stress is given by ogj; = oW /9€;:. If W
is only function of the strain rate and of the time (time hardening)
0;; €;: = W and the condition (12) is met.
lJ 1.] . »

*
If the material is purely viscous, ( is not path dependent.

This is the case when the material crgeps following a Norton's law

¢ = B(t) of. Then the expression of W is
* _ .m 1/1‘1 . = /— . . _
W seq/m B where eq = (2 Bi5 eij/B) and m = (n + 1)/n.
If creep damage w is considered (Katchanov, 1960), Norton's law can be
written & = B(t) o®(1 - w) 0, density of material force rate is equal to

W,k W/ w = W Kk W*/(1 - w). Therefere c* is path dependent in the area
where the damage w is strongly varizble as a function of x (more exactly
where Log (1 - w) is strongly variable).

Strain Hardening Effect

If strain hardening is considered, W* is not only depending of the strain
rate, but also of the strain. Therefore Wfk - oy éij k 1s equal to

€13,k BW*/Bei-. Therefore C* is path dependent, %ut this effect is not
sighificant for creep crack growth. In order to appraise the effect at the
crack tip, C* must be corrected in the following way

*
* ok 3w
Ck(cor) =Cy ]‘ 25 % dv (13)
%€ .
\Y% 1]

*
In plane cases, with Norton's law, the corrected value of C 1s written

o€
* * *
c o Wt 2B . &4 (13"
corrected X
Boe
T eq
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*
When strain hardening is considered, C is path dependent and using a cor-
rected expression of C° is advised.

Non isothermal bodies

It is well known that B (in Norton's law) is temperature dependent and so
must W® be. Therefore if temperature 6 is not uniform in the body,

WA= ogr €53,k = 8,k 9W'/36 and C* is path dependent. This effect is
spurious” and Joes not concern conditions of crack growth. It can be elimi-

nated in using a corrected value of CE
* * aw*
= - S 4
Ck(corr) Cy Jﬂ 58 e’k dv (14)
\4

In usual plane configuration, using Norton's law, the corrected value of
¢* is given by

*
* * W 5B 36
= — — 14"
C (corr) ¢ + J~ — B35 0% ds ( )
r
*
I# temperature is not uniform in the body, C s path dependent. In order
» assess crack tip state a corrected value can be used.

Creep and Elasticity

llastic behaviour of material cannot always be neglected and it is sometimes
necessary to comsider elastic strain rate & in addition? of creep strain
rate v. If ¢(e) is the elastic_energy density and v(¥) a scalar function
characterising creepbehaviouri stress is given by oj; = 9¢/3ej; = aw/aoij.
In such a case W* is not longer a state function and 1s depending of the

real history
t t
W= Yo+ j cédt = ¢ + & --§ 6 & dt 16)
0

0

*
Therefore the expression of Ck is given by

* --. o . _ . _ - . PI
Ck = Jﬂ(o’k é + oe,k) dt — oé = oe’k Jﬁ(c’k é + & e,k)dt “17)

* 2
and C. is rarely path independent. If © (and e) are non time dependent
(statlonnary creep) Ck is not path dependent.

“For the sake of simplicity, subscript will be eliminated, e, vV, 0 are
tensor notations, c.e the contracted product of o and e (Oij eij) and e

k
the partial derivative related to x . ?
) . < . . .m 1/n
1f Norton's law is considered, the expression of ¥ is ¥ = veq/m B where
m=(n + 1)/n and ¥ = (2 V.. v../3).
eq 1] 1]

AFR VOL 3-V
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CONCLUSIONS

In the creep region, quasi static fornulation of the principle of virtual
work leads to the introduction of functions like wr = o dé¢ which are not
equal to the rate of straining work W = j.o de. This szems the reason why
C” is not the rate of J.

As continuity conditions are not met in crack growth a generalized formula-
tion of this principle must be used. This formulation leads to the intro-—
duction a material displacement field ag, characteristing the evolution of
material properties. This displacement is the cause of an additional work
equal to its product by material force density Cp-

If the material displacement field can be quoted by a finite number of para-
meters a, (generalized displacement), the additional work is equal to Cg ag
where Cg are generalized material forces characterising the crack growth.
When it is assumed that the crack tip advance is suffisant to characterise
the material displacement field, there is only one parameter which is C™.

s * . .
It is shown that C* is the resultant of all the material forces rate
included in the region surrounded by integral contour.

This allows to study the path dependence of C* and to make a relation
between conventional C* concept and the material force rate in the vicinity
of the crack tip (process zone). As & consequence corrected expressions of
Cc* are given, especially when strain hardening is considered and for non
isothermal bodies.
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