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ABSTRACT

The purpose of this paper is to analyse the effect of unilateral contact bet-—
ween the lips of a crack in elasticity theory. Usually one considers that the
effect of this phenomenon imposes the safety of a structure. It is shown in
this paper that it not always true and that unilateral contact can be at the
origin of a buttress which changes the stress distribution.
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INTRODUCTION

In linear elastic fracture mechanics, it is well known that the rate of
energy relecase in a crack propagAation is a characteristic of rhe crack propa-—
gaticn. A large number of contributions have been devoted to the determina-
tion of this quantity which is conmected to Rice's integral or stress inten—
sity factors. But the contact betwcen the lips has been very seldom discus-—
sed. In such a case, the rate of energy release as a governing quantity in
the evolution of the crack has to be resumed. This is the aim of the first
section of the paper. Then the numerical implementation of methods taking

the unilateral contact into account is presented in the second section.
Numerical results are given in the third section.
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I - THE ENERGY RELEASE RATE

L?t us cons%der a cracked body which is supposed to behave as an elastic me-
dium. The displacement field is u and the stress field c. Let us assume - for
sake of simplicity - that the solid is two dimensional (figure 1). There
exists a crack in the solid, the length of which is £. If the potential
energy of the solid is considered as a function of the crack length, we set :

1 Fo]
(1) F(L) = 5 IQ(K) Tr (c vy (u)) - fF g u

o

where g is the set of external surface forces, y(u) is the strain defined by:

2 =1 @& du
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and the stress c is connected to the strain by thke clacsical relationship :

(3) c =R y(u)

where R is_the stiffress operator of the medium. In the formulation (1) of

tbe potential energy, the displacement field and the stress field are solu-

tions of an elastic problem which can be formulated as follows. Let V be the
¥

space of all the kinematically admissible displacement fields on «. Then the
stress field c¢ is such that :

v
(4) ¥yveV, /o Tr (c Sﬁ) - [F(ﬁ) n c |v]
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where |v| is the discontinuity in the displacement field on the crack lips

rce).

Figure |

If there.is no friction between the lips of I'(£) the tangential stress & c t
on F(i? is zero. Furthermore the normal discontinuity in the displacement
field is such that : )
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[u1n > 0 on I'(£)

(the notation [u| denotes the normal discontinuity). The normal component
of the stress is negative or zero j ie

Mcn < 0 on ()

The energy release rate is then by definition (O0)

(5) c=-2 @

The computation of G is not straightforward even if the result is quite
obvious from a physical point of view. The difficulty arises from the unila-
teral condition. But the contact force does no work in a displacement field.
Hence one can guess that the energy balance equation leads to te same ex—
pression of G as in classical elasticity. The result would be slightly diffe-
rent if friction were to be taken into account. From a mathematical point of
view, it is proved in (1) that :

s o) duy ¢
(6) G = 3 fg Tr Lo aM) be + IE b c ey

where ¢ is a path surrounding the crack (see figure 1) and e; 1is the unit
vector parallel to the crack, b being the normal unit vector to the curve ¢.
This expression is the classical Rice's integral (2). But c and u are now
solutions of the unilateral problem. As usual, this expression is only true
in plane elasticity. For thermal problems or axisymmetrical structures, one
has to add a surface integral on the area enclosed by the curve ¢. From a
computational point of view, many papers have shown that the expression (6)
of G leads to accurate values of the energy release rate as far as it is
possible to choose a curce ¢ far enough from the crack tip. But that is not
always possible, for instance when there are several cracks very near to one
another or in the vicinity of a material discontinuity (bimaterial cressing
(4)). In such a case, the computation of G with Rice's integral appears to
be very difficult and inaccurate. In other respects, it would be very conve-
nient in a finite element code to be able to compute G with the help of
quantities defined near the crack tip, because the description of the nodes
on the curve is easier to obtain automatically. This is particularly impor-
tant when we are wishing to study crack propagation through a structure with
an automatic remeshing. For all these reasonms, it appears interesting to have
a more accurate expression to G (for numerical purpose).

This can be obtained from (6) by an integration by parts (Stokes'formula) .
As a matter of fact, it has been proved in (1) and (3) that :

du 96

Ju y
G = - Tr (e o) div 6 + o) Tr (¢ o5 Ty

1
2 fQ(Z)

where 6 is any vector field satisfying the following properties :
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(1) on a neighbourhood of the crack tip, say V , 8 is a constant
vector, the components of which are : (in the axes of figure 1).

1

8 = (

)

(ii) outside of another neighbourhood Vl of the crack tip, con-
taining VO’ 8 is identically equal to zero.,
The computation of G from (8) is as a matter of fact, limited to the compu-
tation of an integral over a surface surrounding the crack (excepted for
thermal or axisymmetrical problems). It is well known in numerical analysis
that such an integral is able to be computed with higher accuracy, than an
integral over a curve. Hence, this enables us to compute G closer to the
crack tip than with Rice's integral. The reader will find comparisons of the
two methods in the references (3) and (4). Let us now consider an applica-
tion of this method to a particular problem arising in a pipe of a nuclear
reactor. It is an axisymmetrical situation.

II - THE PROBLEM TO BE SOLVED

Let us consider a piece of pipe having the shape drawn in figure 2. The
reinforcements inside the pipe are used as flanges to support a circular
valve in order to bhlock the pipe when one wants to isolate the reactor from
the rest of the circuit. A simplified model of this structure is given in
figure 3. The vicinity of the two cracks (four crack tips) involves a mesh
refinement as in figure 4.

a) Boundary conditions (figure 3)
At the end A, we assume that the longitudinal displacements are locked and a
reaction - due to the rest of the pipe - is introduced at the other end B.
An internal pressure is applied on the pipe. When the valve is open, this
pressure is P = 30 bars. When the valve is closed, the internal pressure is
still 30 bars on the side of the reactor and | bar on the other side. The
closed valve presses over the reinforcements. The pressure is approximately
230 bars (in order to equilibrate the valve).

b) Computations
The energy release rate G has been computed for each crack tip when the
valve is closed. In order to compare the effect of the unilateral contact
two models have been studied :

- with unilateral contact W.U.C.

- without unilateral contact W.N.U.C.

III - THE RESULTS

The numerical results obtained are summarised in table 1.
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Crack tip 1 2 3 4

G.WUC 1.09 0.35 1,710°
(no unit)

G.WNUC 0.99 0.53 1,710~

Table T

It appears from these results that unilateral contact prodgces a buttressk
which transfers a part of the force, acting on the crack tip 2, ontolirac
tip 1. The difference in the present computation 1S about 107% on G. use

is made of a Paris law to characterise fatigue propagation, one has to con-—
sider an expression such as.

df _ n
aﬁ- » e (/—G—)

where n would be between & and 6 (and N is the number of cycle§, ie the num-
ber of closings of the valve). The error, if we neglect the unilateral con-
tact, would be between 20% and 307 (furthermore in the wrong se?sezfor crack
tip 1). Obviously, the conclusioms are the opposite for crack tip 2. .

The conclusion of this paper would still apply if th?rmal problems were con-
sidered. Then the heat transfer would certainly be different depending on
whether the two lips of a crack were in contact or not.
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Figure 2
A section of the pipe

Figure &
Mesh refinement near the crack tips
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Figure 3
The axisymmetrical model



