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ABSTRACT

The three dimensional state of stress in a finite thick
rectangular plate with a through-crack under tension is
investigated. It is found that the in-plane stresses and the
transverse normal stress are singular while the transverse
shear stresses are of the order of unity. The only type of
singularity encountered is that of inverse square root all
through the plate thickness including the corner points at the
plate faces. The stress intensity factor which is found to
vary with 2z and the thickness ratio h/a drops rapidly in a
thin boundary layer near the plate faces, but without actually
vanishing there. The stress intensity factor reduces exactly
to that for the plane strain case when h/a —+» o . All the
three components of the displacement field are finite at the
crack front.
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INTRODUCTION

Recent studies (Hartranft and Sih, 1969;Sih, Williams and
swedlow,1966; Folias, 1975, 1980) in three dimensional (3-D)
cracked-plate problems with cracks emerging at the free
surfaces have raised some questions such as, (1) the type of
singularities involved at the crack front, in particular, at
the corner points where the crack front penetrates the free
plate faces, (2) the type of variation of the stress intensity
factor (SIF) across the plate thickness, in particular, near
the plate faces, (3) the finiteness or otherwise of the
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displacement components at the crack front. The studies
carried out in the above mentioned references point ,to the
existence of the inverse square root singularity 1/(¥)’2in the

stress field interior to the plate thickness with a
predominantly plane strain type of deformation; no numerical
results are prsented there. However, near the plate faces,

while the first two references do not throw any light as to
either the type of stress singularity or the deformation
character,the studies in next two references reveal a Possion's
ratio-dependent stress singularity, viz, 1/(f)¥2+ 2§} indicating
a displacement singularity at the crack front for M >1/4; in
contrast, in the first two references the displacement
finiteness condition at the crack front is enforced on the
solution. The results of (Benthem, 1976; Kawai, 1975) for
the stresses _near the corner point of a quarter plane crack
exhibit 1/(T)® singularity withet varying from 0 to 1/2 in the

former's case and 1/2 to 1 in 1latter's investigation. The
experimental studies of reference (Villarreal, Sih and
Hartranft, 1975) serve to confirm the qualitative results of

(Hartranft, 1969; sSih, 1966; Folias, 1975,1980) regarding the
character of the singular deformation field interior to the
plate thickness; but, near the plate faces, a rapid decrease in
SIF values is indicated, suggesting a reduction in the strength
of singularity in the region.

In this paper, the 3-dimensional state of stress in a thick
rectangular plate with a through-crack wunder tension is
investigated. The mathematical formulation of the problem is
based on the 3-dimensional elasticity equations, (Lure, 1964).
The solution obtained satisfies, exactly, the stress-free
conditions at the crack surfaces as also the plate faces; and
the boundary conditions (B.C) at the exterior edges of the
plate, 1including those of the applied tensile 1loading, are
satisfied in the least square sense. It is found that the in-
plane stresses and the transverse normal stress are singular at
the crack front while the transverse shear stresses are of the
order of unity.

During the early stages of the formulation of the present
problem some interesting features concerning the singular
stress field at the crack front were observed. Some of these
results were reported in (Bapu Rao, 1981). Subsequently,further
formulation and numerical studies were carried out. In this
paper,only essential features of the formulation of the problem
and numerical results for two typical problems of a thick plate
with a through-crack under tension are presented. These
results and their comparison with existing results lead to some
important conclusions.

FORMULATION OF THE PROBLEM

In view of the cylindrical coordinate system chosen (
association with the Cartesian coordinate system (X, ¥
Fig. 1, it 1is necessary to consider for analysis only the
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region defined by (-a)g X & (L-a), (-B)§ ¥ ¢B and (-h)§ Z gh,
with appropriate continuity conditions at X=-aand boundary
conditions at other edges, which are given as

Fig. 1. Coordinate system and plate dimensions

at X=-a., u =0, =0x, =0; at X=(L-Q), Oy = 0yxy= 0xz2=0 (1)
at y=tB, Jy =0 (applied tension),Uyz = Oxy=0 (2)
The governing equations (G.E) of the problem are the 3-D
elasticity equations in terms of displacement components
(u,v,w). These equations as also those for the stress
components (dy /+Tg/, T ve Tz =« d;} r §gz) are available in
(Hartranft, 1969; Lure, 1964) . It is convenient to
nondimensionalize ( ¥, 8, Z) with respect toa : r=r/a , 6=6,
and z=Z/a where 2Q is the crack length. The solution to G.E

must satisfy the following boundary conditions :
(i) at the plate faces ( z = + h/a = +3), 0 ,=0gz= 0z =0;
(ii)at the crack surfaces (© =+ T ), 0rg=Tg =0gz =0

and also those defined by egs. 1 and 2. The solution to G.E is
given as

U= Re L Wi (Z,A0) K Xq(R8,A0) + X (@) + (3)
K=\
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- . %)
Xa=;1’,m'1ﬂ('}<)-c°5“° , Xp= ;tm I _(nl)-Cosne (7,8)

Xy =t [2/(n+)]-[2Q-2p)-1]- Ay r™*! cosne
mn
— 2 Mn. Ny- r™ ! cosne (9)
N+1
XZ=_Z [7‘/(714-1)]'[4'(“]“) +n]-Aqn r;ﬂ+ smmme
n
+ 2 ANn-Npn- r" 7\ sinne (10)

in eys. 3-10, Ip(Ag,r/8) and In(lMr/8) are modified Bessel
functions of the first kind, and A are the complex roots of
the equation Sin 2A,+ 2Ax=0,(this equation is obtained by
satisfying the stress free B.C's at plate faces). Here Cyg and
Sk are the values of Cyx and Sk at z=9%; Pun and (Nq ,tgn,Ap)
are the unknown complex and real constants respectively.

The first terms in eq. 3 automatically satisfies the B.C. at
the plate faces by virtue of the equation Sin2Ay +2 Ax=0,
( k=1,2,3,... )i these conditions are also satisfied
independently by the second and third terms of eq. 3 when
considered together, leading to the elimination of some of the
associated unknown constants. In order to satisfy the B.C at
the crack surfaces (these B.C.'s are to be satisfied by all the
three terms in eq. 3 considered together) it 1is useful to
express the stresses in the form of a power series in r, Sine
and Cosine functions of @, and Fourier Series in #. This can
be accomplished by expressing (Cw,Skz/8) and (Sk,Cxkz/8) in eq.
5 in Fourier series of the form Cp (z) and Se (2); 1%1,2,355s0
as also terms of the order of wunity O(z°), by taking
advantage of the power series form in r of Bessel functions and
biharmonic functions, and by virtue of the existing Sine and
Cosine terms in @ present in egs. 7-10. It is now appropriate
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to consider the range of n occurring in the expressions for the

stresses and displacements, egs. 7-10. The range <.)f.n is
determined from the satisfaction of the finiteness condition of
displacement components at the crack front. It is found that

there are four groups of n whose ranges are : n=2j+1/2, n=2j+1
and n=2j,. j=0,1,2,...; significantly the 1limit placed"ls
on the lower value of n,(n=-1/2). Satisfaction of the B.C. at
the crack surfaces (by setting® =% in the expressions for dg »
Ogz -and Ore) with respect to each power of r for eac;h rang? of n
lead to singular stresses. This method of satisfying B.C's has
been employed for a two dimensional bending problem of a
cracked plate, (Murthy, 1981). The B.C's at the exterior edges
of the plate as defined by egs. 1 and 2 are satisfied with
respect to stress resultants (rather than unit stresses) and
average u over the thickness, in the least square sense. The
satisfaction of all B.C.'s mentioned above 1lead to the
determination of all unknown constants for given plate
dimensions and h/a ratios.

RESULTS AND DISCUSSIONS
It is found that the jin-plane stresses ,6rerTe) and Gz are

(6,
singular with a 1/ ( )% singularity; the sEresseg 0yzand ﬁ_z are
of the order of unity. The corresponding expressions are givenas

Tr=K (2)-[Va(2F)2] (5 cos @ — cos 3e/z) + Q(r®)

g =K(2)-[Va 2 ¥52]-(3 cOs 8 + Cos 382 )+ O (T -
Tro= K@) [Vacarse] (sin %+ Scn36/2) + O(F)
0z = K@ (412 (2F)2]- COS %, + OC(F*)
= re re 12
0 ,=0(F°) , Ggp=0(F) “12)
In egs. 11 and 12, K(z) is the stress intensity factor and £(z)
is the factor associated with the singular term of 07 - The

corresponding expressions are given as
'/ a
K@= —2(a%cL{Re §=l(5n/gz). Pecyey +4 Aval+
et e X =2
(Y/8%)- L. e thz)x{pgz1,\K. Pecvy X (3
=1 K=

2
(A =0+ G — NS (@Ts)- tec-vert]
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k‘ =-2c2a3® Ref (/mse?)- P + 4 A
(£)=- al{ 2z (/5  (=Ye) )+

@ * 2
Y N (mg)- Cp@) = {Rez:-_"\x' At Paes F

=1
e 2
0% (R) - teevay} ] (14)
In egs. 13 and 14, pK(_yz),A_,/zand tu._yz\are the unknown constants
referred to earlier with respect to n=-1/2. Here,Agxgand Gwtl are

known functions of Axand 1w ; G is the shear modulus. It can
be observed from egs. 11 that the only type of singularity
encountered is that of inverse square root all through the
plate thickness including the corner points where the crack

penetrates the plate faces. In reference (Folias, 1975) a
. . —Jptem :
Poisson's ratio-dependent 1/(r) type of singularity was
exhibited; in the present analysis, it is noted, no such
dependence on g is imposed. The angular variation of

singular stresses are identical to those of (Hartranft, 1969).
The SIF is found to depend on z and h/a ratio. It can be noted
from eg. 13 that it does not vanish at the plate faces aq?,
therefore,the in-plane stresses preserve their 1/(r)=
singularity all through the plate thickness including the
corner points at the plate faces. It should also be observed
from eq. 14 that K(z) vanishes at the plate faces, thereby
leading to vanishing of g7 here. It is interesting to note that
the expressions for K(z) and K(z)® reduce exactly to those for
the plane strain case when 2h—#9 (88— ™®); thus plane strain
results are recovered from egs. 11 and 12. It is noteworthy
that all the three displacement components are finite at the
crack front. In contrast, in (Folias, 1975), they were found
to be singular for certain values ofJﬂ (yn:-ZQ) in the vicinity
of the corner points.

The preceding discussion was made without any reference to
numerical results but solely from the nature of the
mathematical expressions presented in eqs. 11-14 and also those
not presented here to save space. Therefore, it will be

interesting to discuss the numerical results obtained. Fig. 2
shows the distribution of SIF across the plate thickness for
the case with B/L = 0.875, QA /L = 0.5 and h/a =€ = 1.5
and for applied tensile loading. Corresponding results

obtained by finite element nethod, (FEM) , (Raju and Newman,
1977) and the boundary integral equations method, (BIE) , (Tan
and Fenner, 1979) are also presented for comparison purposes.
The K values from the plate middle plane z=0 to about z=0.6 %
are in good agreement with those of FEM and BIE. At z=0, the K-
value of the present method is about 1.438 while that of FEM
is 1.401; it 1is of interest to note that the corresponding
plane strain value is equal to about 1.43. 1In fact, as can be
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Fig. 3. SIF distribution across plate thickness
(normalized by mid-plane value)

observed from Fig. 2, the

singular

deformation character is

more or less equal to that of plane strain in Fhe _regiQn
interior to the plate thickness z=0.0-0.6 L i th1§ is in
agreement with the qualitative behaviour predicted in

(Hartranft, 1969; Sih, 1966;

Folias, 1975) for this zone.

However, beyond this zone, the K-value increases gradually with

increase in z upto a maximum value and then drops rapidly in

a

small boundary layer near the plate faces. The location and
magnitude of the maximum value of the present method are

different from those of (Raju,

value at z= $§ (free plate faces)
these references; when compared to the mid-plane value the

1977; Tan, 1979). Also, the K-

is much less than those of
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percentage drop is about 19.86 for the present case. 1In this
connection it should be pointed out that the FEM can not
represent accurately drastic changes in slopes such as those
realized in present K-distribution in the boundary layer

region. However, the slopes encountered at points z= g and at
z= & for the FEM case (see Fig. 2) do suggest a trend which
leads to a larger drop than numerically indicated. Fig. 3
shows a comparison of the SIF distributions across the

thickness normalised by the K(o) value (mid-plane value) for
the case with @ =1.316 obtained in this paper and by the
photoelastic method (Villarreal, 1975). As can be observed
from this figure, the agreement between the two distributions
is reasonablly good for the region, z=(0.0-0.85)¢% ,
(approximately); the predominantly plane strain type of
behaviour observed here confirms the qualitative results of
(Hartranft, 1969; Sih, 1966; Folias, 1975) for this region.
Although for larger values of z increasing differences are
observed, the significant feature noticed here lies in the
qualitatively identical distributions of the two methods, all
through the thickness except in a small region 2z=0:3to O-97 3.
approximately. At the plate faces, the percentage reduction in
the SIF value is found to be 45 as against 40 (approximately)
of (Villerreal, 1975).

Based on the nature of the mathematical description of the
singular field and the physical character of the numerically
evaluated SIF distribution, verified by experimental results,
it can be concluded that l/(?)”lis the only type of singularity
present all through the plate thickness, although the strength
of singularity decreases near the plate faces. Secondly, the
region interior to the plate thickness experiences a more or
less plane strain type of singular deformation; but, near the
plate faces, there is a clear departure from this behaviour as
suggested by the rapid decrease in SIF values. The displacements
are finite at the crack front all through the plate thickness.
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