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ABSTRACT

Based on shallow shell theory, taking into account of lateral shear deforma-
tion, the governing equations for cracked spherical shell expressed in dis-
placement and stress functions £, F and 9 are proposed. They are reduced
to equivalent two-order differential equations and then a general solution
including Mode I,II, III for stress-strain fields at crack tip in a spheri-—
cal shell is obtained.

INTRODUCTION

The study of cracked shell is an important problem in practical engineering
constructions. Since curvature exists in shells, extension and bending are
coupled, which makes the problem very difficult. In earlier literatures the
classical shell theory (Folias,1965) was used. In recent years more
investigators began to study the problem with Reissner's theory. By using
Reissner's shell theory a ten-order differential equation is proposed
(Sih and Hagendorf,1973). Since the problem is complicated, only the
first term of expression is given. In order to calculate stress inten-
sity factors (especially for mixed mode), it is neccessary to search the
general solution for stress-strain fields at crack tip, which is the aim
of this paper.

THE GOVERNING EQUATIONS OF A CRACKED SPHERICAL SHELL
AND THEIR SIMPLIFIFD™ FORMS

A spherical shell containing a through crack is shown in Fig.1l with the
crack tip as the origin of the coordinates. The shallow shell theory, tak-—
ing into account shear deformation, could be expressed as follows(fﬁu,1981 ):
Relations between stress and strain:
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Where M , M , M are bending moments, torsional moment and shear
forces respgctlvgly, N , N N are membranous forces. u,v,w are the tan-

gential and transverse dlsglacexents respectively. B is extension-compres-
sion stiffness; D is bending stiffness; C is shearing stiffness.
The equibrium equations are:

Nz | ON=xy __ ONxy |, Ny __ 4

ax * oy 0, o2x + 29 2Y 0 (4]
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Mz Sften—go—0, 5+ G- —0y=0 (5)
Q

ji"-&g L+ f(NutNy)+ Q=0

Where q is the lateral load per unit area. k is the curvature,
Introducing stress function ¢ , let

2
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/Vz—:g—‘gi‘ , /V_';xi; , Nxy="73339 (6)

From eq. (3) , we have compatibility equation.

S Ve kviw=10 (7
Substituting eq. (1) , (2) into eq. (5) , we have:
O'x "V3'!E£! I+V o Yy ( _ — 8
DGxv ¥ =7 Sy 2 S B =t =0 8
”V_L‘éx J=P .a_"l_ _1)4C( -‘}‘9)__0 (9)
D sxoyt T2 ax o 00
cCrw-S% -2 frge 9 =0 (10)
Boundary conditions along the free edge are:
=7 Mu———o, ng='0 ’ a9=0 (11)
Ny=0, Ney=20 (12)

Introducing displacement functions f, F, let

‘/’x='ﬁ-+——t = 2F _9f (13)

oy ’ ¥y ox
Substituting eq. (13) into eq. (8) , (9) . we have:

ax[pvp*aw F)]+3—g[-(/—v)v‘f—cf]=0 (14)

2D W)= [ F U CFI= 0 (5

From it we have:

%u-wv’f—q“n’[DV‘F'C(W-F)I—C¢(1+NJ) (16)
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where ¢ (x + iy) is an analytic function. Hu(1981) assumed that $H=0.1t is
correct for cases without singularity. As the crack tip is a singular point,
generally speaking, ¢ # O.

Separating real part and imaginary part in eq. (16) , we have:
DYV'F+ C(W=F)=CImd (17)
%U—V)V'{—C;"=Cﬁc@ (18)
From eg. (17) , we have:
W —F——CEV‘F'F I, (19
Substituting eq. (13), (19) into eg. (10) , we have:
DPVF-kyie= 29 (20)
Substituting eg. (19) into eqg. (7) , we have:
7774’ hAVE—kEVPE=0 (21)
The governing equations can be reduced to three equations (18)Y , (20) ana
(21) in terms of £, F and @ . The function f, which is similar to that in

bending plate case, is uncoupled. The function F and ¢ should satisfy two
four-order differential equations, we could reduce them further.
If g = 0, from eq. (20) ., (21) . we have:

V‘V'V’F—%V‘V’F*%V'F:O (22)
It may be proved that, function F in eq. (22) is the sum of three func-

tions E, 1?‘1 and F2, which should satisfy the following equations respective-
ly.

vrF, =0 (23)
v'Fi— 4L F =0 (24)
V'F.— 4)A}F, =0 (25)
F=F.+F,+F. (26)

‘A8, B _48 :_AB_ [4*B _4'B
dl =5z Frma-t2 =7 2c " (27

With the F known, from eq. (20) the ¢ could be obtained.

4D

P =Gt - (AF  ATFLD) (28)
Where ¢, is harmonic function, which should satisfy vig, = O. From eq.
(18) - function f could be found

f = f.— Red (29)
f, should satisfy following equation

Vo— 41 f =0 (30)

2( /0

Where 4,‘1 YT v

With functions f, F and ¢ known, the generalized displacements and genera-
lized stresses could be obtained. They should satisfy the boundary condi-
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tions of free edges:
o=*7 , My=0, Mz=0,6 &=0 (31)
/1/9—':0 /Vya=0 (32)

THE EIGENFUNCTION OF THE DISPLACEMENT FUNCTIONS AND
STRESS FUNCTION

Expand the analytic function ¢ in series
P+ Yy =SB+ (%, 3" '= T (B +io, ) 1" [cosanguisindng) (33)
A A A=t
Function f and w could be expressed as

£ = 7["“{: YA (o4, Sin (A1) § - 5A_, coSCA-1)81 (34)
W=F- %V’F'%—YA—’ IO(A"COS(A-I)B‘FP/\-IS‘;" (A-I)ﬂ ] (35)

Function F could be found from eq. (26)

F = Fo+F +F, e
Functions £ , F. and F_ should satisfy the eq. (30), (24) ana (25) re-
spectively. These equagions are Helmholtz's equations. Their solutions

could be expressed in modified Bessel functions. From the condition of fi-
nite strain energy, we must drop out the modified Bessel function of second
kind. Keeping in mind that A will take positive, zero as well as negative
values, the solutions could be expressed in modified Bessel function of
first kind only.

For symmetric case

m rAOun

7= SinApLzp 1) =S/'nksmé“” TP MY (36)
2 erxm

Fa=COSAOL,(2A,Y) == COSABZ “migek, 7 (37)
/{:“‘ ),-Abun

Faa== COSABIN(2AeY ) ==COSABZ  ~migpeimy (38)

For anti-symmetric case

~ ,U“” )r/\‘l'"

£ = COSABIv2HY >=cosie_§%_ﬂ——m, I (39)
- /lzln r,loun

Fa= SmA8 L2hry = sinhdZ S Tmy  (40)
/‘zm r/\-rzm

Faoy= SinABL(2A,Y) = ""lw,_%;,,____m’"?' (41)
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Where
/*</1+m+v)__{ (A*1) A+ 2 ) (A+ m1) (42)

¢(A’M)=_—__F(i+l) = ,

The linear combination of them is also a solution of these equations, so the
general solutions of eq. (30) , (24) and (25) are expressed by

fa= ‘izné.:-- (Al-wxnﬁ—»n‘BA-um 7;:\)_.-;:” b} (43)
’ [} ~

F,= ;;.Z:_ (KA_(,,.)M F,,,[-uzn + Livasn Froa-iezn) (44)
2) ~

Fom 22 (Kl Fanersan* Liiwan Foonctoan ) (45)

Substituting eq (43) - (45) into eq. (26) , (28) , (32) ana (33) the

functions £, F, ¢ and w could be expressed by
M A-1a2 (N )

f _—__gé’g‘_,u,ffn Q1421)04B)o1a3p COSCA-1427 )9]_%"._“,"_/(’(1- v24.m)

+§ YA (o4, Sin (}-!)0—@‘_‘505 (A-1)81 (46)
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(48)
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+;r"“‘ (041 €OSUASI I+ By Sin CA=178] (49)

Acc?rding to the singularity analysis, the generalized stresses should be of
O(r’). These condition mean that functions f, F, and @ should beiof O(rl),
the generalized displacements Y= 5//,, , w, u, v should be of O(r”).

From the condition of singularity, f, F, ¢ and w should satisfy the follow-
ing conditions:

1. In order to insure that f is of O(rI ), in eq. (46) it is neccessary
that

- — 0
When A-1 <372, A=, , Baor=Ba- (50)
2. 1In order to insure that F is of O(r* ), in eq. (47) it is neccessary
that

@ QY oy @y ___

When I=1<€3822, KpgtKy, =0, £+ L =0 (51)

3. In order to insure that ¢ is of O(r% ), in eqd. (48) it is neccessary
that

When A-1 < 3/2, MA-V=“4%‘ A KA‘-,)" /l:KA'j: )
(52)
Maer=- o) L2+ ALLYL)
4. 1In order to insure that w is of O(ri), in eq. (49) it is neccessary
that
When A=1<1/2, eppm (Badi- DK+ (gai- DKL
Ba=(2aAl- D00+ (RAA- 1LY,
Introducing new coefficients
Zper= otars (1-RAA] KL+ (1= 2K, 551

)

Bac= Bt (r=Zariyzlec-Baxy 3
when A-1<1/2, =0, 3,.=0
A=t
The boundary conditions are:

9=2m. Mp =Ms=Qs=0, Ny=Npp=0

The boundary conditions in terms of functions £, F and ¢ could be expres-

sed as . DF 2,19
(1= V)= (- P)= s
BE-L1= 0 10 y ay(y—;%) 0 (54)
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2 (L2F S 1oAY,

S 5e )t (ZpFem G ) =0 (55)

ofe D 12 g

or cT7og" F=0 (56)

2P, (57)

I

J (1 9%, __ (58)

or (v o9 ) =0
Substituting eq. (46) - (49) into eq. (54) - (58) , linear equations whose
unknowns are coefficients of the expansions could be obtained. 1In order to
satisfy these equations, let

n
A =% » Nw=0, 1,2, (59)

From the condition of finite strain energy, X\ should be positive only. The
relations between coefficients in eigenfuction expansion could be found from
these linear equations.

THE STRESS AND DISPLACEMENT FUNCTIONS AND
STRESS-STRAIN FIELDS AT CRACK TIP

Using the relation between coefficients in eigenfunction expansion, func-
tions £, F, ¢ and w given in eg. (46)- (49) could be expressed as

1. If A is fractional

=3 KA REDSin (A-1)84 (L0 + Li8) cos A-1)6']

(3]

+ z[fci’ (AT KR A ALK ) sin(A-142m) 64 _}_;’mqm. 4?‘)*7 i *{l’lilx-o

. (_Iu’)" Ly 20n+m)
Cos -1+ 21360137505 n-z,n).‘.i..,,,..m Tec-reznm (60)

fo=Z YN QIR A KL s A=116+ (B # 2R A 481 +22AL, )eosihn)
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A-1422

\ (_/uJ )u /Luu r,l-l‘t(’l‘m)
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2. If A is integer

ry B3
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(_/\z' Hn /{"‘rt—uumn)
RNIQUIA2N Yo M PU-1#201, m)

Al o,
422 [KlcosUetoamp Zon 1 5in Uetv28)
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G CD)“)%—..,Z...,[-‘-(‘“CW" "ZH)G'A—HMZ*'Y”M'Z”Mmmnrz,n)-Z.mm.'q’ol-nzn,m) (69)
when  A-1<3/2  KGaKP=0 Lheli=0

When A-1 < 1/2 =0 5. =0

Substituting F, £, ¢ and w into eq. (1) - (3) and (13) the generalized
stresses and generalized displacements could be found. These are the stress-
strain fields at crack tip in a cracked spherical shell. The sinaularity of
first term is the same to the results (Sih and Hagendorf, 1973).

CONCLUSION

1. similar to the Williams' expansion in plane fracture problem, a general
solution of the stress-strain fields including Mode I, II, III at crack-tip
for Reissner's shell is given.

2. The governina eaquation ir terms of displacement functions f, F and stress
function 9 given by Hu(1981)is only valid in analysis without crack. For
cracked shell the corresponaing equations are given in this paper and they
could be reduced to equivalent two-order differential equations.

3. The general solution for stress-strain fields at the tip of a crack in a
shell provides a better mechanical foundation for calculation of stress in-
tensity factors such as boundary collocation, variational method, asymptotic
method and adaptation to special crack tip element in a finite element for-
mulation etc. The analytical methods for plane fracture problem could be
applied to the Reissner's shell fracture analysis.
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