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ABSTRACT

An approximate solution is given for studying the steady state propag?tion
of the damaged zone in an elastic brittle solid in plane strain. Use 1s made
of the Muskhelishvili method of conformal mapvpine.
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INTRODUCTION

The most simple model of damage is the elastic brittle material.

In that material the parameter of damage
D introduced by Kachanov and Lemaitre [11],
[2], [3] can only take two separate va-
°s lues: . D = O as long as a critical strain
¢ has not been exceeded. Then the mate-
rial is elastic and :

el < €q (1)

. D=1 if the critical strain has been
exceeded. Then the material is totally
damaged and the stress has dropped to

Fig. 1. Elastic-brittle material zero (fig.1) :

g=0 (2)

An elastic brittle solid Q is divided into two zones :

. the first one in which D = 0 is the undamaged zone Qs(t)

the second one in which D = 1 is the damaged zone Qd(t). The damaged zone
grows with time.

The boundary between the undamaged zone and the damaged zone is divided intc
two parts : — on the first one the critical strain is not reached
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— on the second one the critical strain is reached
le| = B (3)

A part of the boundary moves toward the undamaged zone when the damaged zone
is growing. We call it the damage front.

That boundary is a free boundary because 0 = 0 in the damaged zone.

Some problems dealing with thus catastroohic damage model have been already

studied : - dynamic steady state propagation of the damaged zone in anti-
plane mode. The shape of the damage front is then a cycloid [4],
[5]

- the equation of the normal speed of the damage front in non
steady state propagation of the damaged zone in antiplane mode
has been established in [6] ; it is a Prandtl's equation

- a variational formulation for the field of rate of stress and
the speed of the damage front has been established in [7].

Here we shall study the steady state propagation of the damaged zone in
plane strain.

STEADY STATE PROPAGATION OF THE DAMAGED ZONE IN PLANE STRAIN

Let us consider a plane, infinite, elastic brittle solid in plane strain
with a damaged zone {1 (t) propagating through the solid at speed V. The
steady state regime is established (figp.2).

If we look at the damage zone in the moving coordinates axes (0, x;, x,)
propagating at the same speed V, the boundary of the damaged zone seems
fixed, and is divided into three parts

— two straight lines A,Ajand A A, on which the critical strain is not rea-
ched
- the damage front AJA,.

Our problem will be to determine the shape of that front AA,.

On the undamaged side of the damage front the strain tensor can be expressed
by means of the unique scalar value of the tangential traction stress Ope ©

a =t.g.t 4
e T L-o-t (4)
where t is the unit vector tangent to the front and instead of (3) we can
write :

e = %% on A A, (.5)

where R is a material constant depending on FR.

If we look at our damage zone from a great distance (infinity), it looks
like a crack, so we take the same fields at infinity as for the problem of
the semi-infinite crack, but the parameter K_ which is a stress intensity
factor for the crack problem is in our problem only a loading parameter at
infinity.

Using an invariant integral it has been established in [5] a relation bet-
ween the half width h of the damaged zone, the loading parameter KI and
the damage stress © : K.2

R
= 1
h OR2 (6)
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CONFORMAL MAPPINGS OF THE UNDAMAGED ZONE

We consider w(f) , the function which maps the interior of the unit circle

|[£] < 1 of the plane £ into the undamaged zone QS in the =z plane (fig.2)
z =%, +1x,=w) (7)
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.Fig. 2. Conformal mapping of the undamaged zone

The point £ = -1 gives the point at infinity in the 2z plane and is a pole
of order 2 of w(f£). If we can find the unknown function w(f§), we shall
have the shape of the damage front.

We shall use the Kolosov-Muskhelishvili method [8].

The elastic solution in the undamaged zone is given by means of two complex
functions @(£) and Y(£) which must be deduced from the boundary condition.

In particular it is well known that

o] +0 = 4 Re(wzg)/m'(g)) (8)

XX Yy

and the condition 0.n = O on the boundary of the undamaged zone is equiva-
lent to :

w

__{él T
MG (!
©)

Y&y

+ =0 if |gl =1 (9)

The condition of loading at infinity is equivalent to :

z
Py ¥ K ¥ |z} + = (e
or
w
©) L
O(py ~ Ky & £ 1 (11)

The damage front A, A, in the z plane corresponds to the arc A;A; in the
£ plane. On that arc we have by means of (5) :

= + O =0 12
Oxx * oyy onn tt R H&d
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because Onn= 0, and we deduce :

Re (m'(E)/w(E)) = oR/lo on A} A} . (13)

Our problem becomes : find the three functions w(g), w(g), w(g) with the
boundary conditions (9), (11), (13) and (14) :

Imw(g) = h on Al A}
& = (14)
Inlw(g) = -h on Al A}
and with w(g) having a pole of order two at &=-1.

This is a non-linear problem. In the next section we shall look for an ap-
proximate solution.

APPROXIMATE SOLUTION
We shall write w(gE) as :

wE) = (Fr /0 02 (15)

(w(E) (1 +&)? is holomorphic in the unit circle and can be expanded in a
series).

This transformation has already been used by V.D. Kuliev [9] to study the

problem of a semi-infinite rectangular cutout. The Tk are unknown and must
be found from conditions on the damage front.

We shall have an approximate shape if we truncate the series :

N k 2
wg(€) = (ZT £/ 1+ ; (16)

To have a finite width of the damaged zone at infinity we must have :

FEDET k-1) =0 . (17)
0 k

For each value of N we can have the exact elastic solution of the approxi-
mate problem.

Let ¢_ and 1V, be the two functions which give the elastic solution with
the approximate shape of the undamaged zone deduced from Wy - We can write :

0 ()

Il
om™8

a €M/ (1+8)
(18)

by (®)

— 8

h
Sy £/ (1+8) .
The use of (9) and (1!) allows us to calculate explicitly the a, and c
by means of a simple finite linear system. For details the reader may refer

to [9], [10].

As we are searching for an approximate solution, we must define the error
A(wN) between the approximation and the exact solution.

The error A(mN) will be divided into two parts :
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the first one measures the distance from the damage stress on the damage
front :

01 ON o
B (g = J (Re % - 2)? a0 (19)
: a wN 4
the second one measures the error on the geometry :
6
A (wy) = J (Imwg = h)* 8 (20)
2
[l

1

We choose the total error as :
= + (21)
A(wN) AN (mN) ua, (mN)

In (19) 6, is the unknown parameter of the end of the damage front. A mini-
misation process leads us to choose 6, = 0.965 radians, but the influence
of that parameter is weak since different values between 0.93 and 0.98 give
similar results.

In (20) 6, is a parameter between 0, and T which is related to the distance
from the damage front on which we want to have a good approximation to the
straight line A, A, . We have choosen arbitrarily

21

Oy =5

which gives a good approximation far enough from the damage front.

In (21) we choose two parameters A and Y in such a way that XA, and uwa,
have equivalent weights. We have choosen A= 0.85 and u= 0.15.

Now our error is completely defined by (21) and A(w,) is a func?ion'of the
N + 1 scalar unknowns (T,). We shall say that the better approximation at
order N 1is given by the (Tk) which minimise A(wN).

That minimisation can be done quite easily with a computer and we obtain a
better approximation when we increase N.

APPROXIMATE SOLUTION OBTAINED AFTER MINIMISATION

We have calculate the parameters T, which minimise the error Aw, with 4,
5, 11 and 20 parameters. The error then is equal to A(w2 )= 1.8267.1075.
To obtain a better approximation with more parameters wodid have cost too.
much time of calculation in the computer to obtain only a small decrease in
the error.

In figure 3 we have given the shape of the approximate damaged zone obtained
with the 20 parameters which minimise A(wzo).

We can see that the geometrical error on the straight lines is very sma%l.
For comparison we have reproduced the solution of the same problem obtained
by a finite element method in [5].
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Fig. 3. Approximate solution with 20 parameters
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In figure 4 we can see the error between o & and ©
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On-G

7
os 6 @
o 2
- Q104
-0.204
-Q304

Fig. 4. Difference between Oer and OR
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